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Abstract
We give a proof that we find to be rather elegant of the basic fact that 2n ≥ nC for all

sufficiently large n.

1 Introduction
We are interested in the fact that the exponential function grows faster than any polynomial. That
is, we are interested in the fact that for any positive integer C, there exists nC > 0 such that1

2n ≥ nC , for all n ≥ nC . (1)

This is of course a widely used and quite basic fact, and there are many very nice and simple
ways to prove it. E.g., a very slick proof simply uses repeated application of L’Hôpital’s rule to
argue that limx→∞

xC

2x = 0 for all constants C, which is of course equivalent to Equation (1). To
prove Equation (1) combinatorially, one can note that 2n ≥

( n
C′

)
for any positive integers n and C ′,

since 2n counts the total number of subsets of a set with n elements, while
( n

C′
)

counts just some of
these subsets. Applying the trivial inequality

( n
C′

)
≥ (n/C ′)C′ (valid for n ≥ C ′), and taking, say,

C ′ := C + 1 and n ≥ nC := (C + 1)C+1 gives

2n ≥ (nC+1/(C + 1))C+1 = nC · n/(C + 1)C+1 ≥ nC ,

as needed.
The proofs described above are perfectly satisfactory, as are many other proofs. There is no

need for any other proof, and it would be completely ridiculous for anyone to spend any additional
time thinking about this. As such, there was a lively discussion on Twitter [Twi22] a few years ago
among (otherwise perfectly respectable) mathematicians and computer scientists, giving different
proofs of this and debating what counts as a truly “clean” proof of this basic fact.2

In this short note, we waste yet more time thinking about this basic fact that we already
understand quite well. Specifically, we give yet another proof of Equation (1), simply because
we find this new proof to be quite beautiful. The idea is to take the logarithm of both sides of

1The fact that we restrict our attention to positive integers n and C is not particularly important. Clearly the
result holds more generally over the reals. But, for one of the proofs that we discuss below, it is convenient to take n
and C to be positive integers.

2Of particular note in that discussion is a proof by Gowers, which is not nearly as simple as some of the others,
but has the benefit of being “directly combinatorial.” In particular, Gowers shows an explicit injection from the set
[n]C of C-tuples to the power set of [n] to for n ≥ nC .
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Equation (1) twice, and to notice that after doing this, the inequality moves from “obvious but maybe
not immediate” to completely trivial. (The author does not know of any prior work containing the
proof that we give below, though one must imagine that such a proof has been discovered many
times.)

2 The proof
We claim that the result follows from simple algebraic manipulation together with the seemingly
much weaker and indisputably trivial inequality

2y ≥ y , (2)

which is valid for all y ∈ R.3
Indeed, let n ≥ nC := 24C be large enough so that x := log log n satisfies x ≥ xC := log(C) + 2.

Then,

log log(2n) = 2x = 2 · 2x−1 ≥ 2(x − 1) = x + (x − 2) ≥ x + log C = log log(nC) .

Equation (1) then follows from the fact that the logarithm is monotonically increasing.

3 A little discussion and a note on taking the logarithm one time,
two times, or three times

The above proof works by applying the change of variables x := log log n and considering the
inequality log log(2n) ≥ log log(nC). This shows that in order to prove Equation (1), it suffices to
prove that for any constant C ′ (and specifically for C ′ := log C) that there exists xC′ such that

2x ≥ x + C ′, for all x ≥ xC′ . (3)

In other words, by making this change of variables and twice taking the logarithm of both sides, we
have managed to reduce the question of whether an exponential grows faster than any polynomial
to the seemingly much simpler question of whether the exponential 2x is larger than x by an
arbitrarily large additive constant. The simple algebraic manipulation in the proof above just
amounts to proving that taking xC′ := C ′ + 2 suffices for Equation (3) (though once one has reduced
to Equation (3), there are many more-or-less equally simple ways to finish the proof).

Given the description above, it is natural to ask what happens if one “takes one logarithm
instead of two.” In particular, we can apply the change of variables w := log n. Then, by considering
the inequality log(2n) ≥ log(nC), we see that in order to prove Equation (1), it suffices to prove
that there exists wC such that

2w ≥ Cw, for all w ≥ wC . (4)
3One might complain that the use of Equation (2) is simply passing the buck. But, Equation (2) can be proven

in many very elementary ways. For example, one can note that it is immediate for, say, y ≤ 1 and then show that
2y − y is an increasing function for y ≥ 1 by differentiating. Or, more-or-less equivalently, one can simply note that
Equation (2) follows from the even more trivial inequality 2x ≥ x + 1 for x ≥ 1. Or, one can notice that for y ≥ 1,
2⌊y⌋ counts the number of subsets of a set of size ⌊y⌋ and since there are ⌊y⌋ singleton subsets and one subset of size
zero, this implies that 2y ≥ 2⌊y⌋ ≥ ⌊y⌋ + 1 > y.
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The new inequality with the multiplicative constant in Equation (4) is nearly as easy to prove as
the analogous inequality with the additive constant in Equation (3) (unsurprisingly, since it is easy
to prove that they are equivalent).4 But, it is somehow a bit less shocking that Equation (4) implies
Equation (1). So, the proof loses some of its shine in this light, and we therefore prefer the “two
logarithm” version of the proof that goes through Equation (3) to the “one logarithm” version that
goes through Equation (4). (Versions of this “one-logarithm proof” are rather common.)

Of course, if two logarithms are (arguably) better than one, then it becomes natural to ask
whether three logarithms are better than two. So, let z := log log log n and notice that by taking
the logarithm of both sides of Equation (1) three times, we see that it suffices to prove that for
every constant C ′ (and specifically C ′ := log C as above) there exists zC′ such that

2z ≥ log(2z + C ′), for all z ≥ zC′ . (5)

Unfortunately, Equation (5) is not quite as simple as Equations (3) and (4), simply because
log(2z + C ′) does not simplify nicely (unlike log(2Cw) and log(C2x)). If one is willing to accept the
basic inequality log(2z + C ′) ≤ z + C ′′/2z for, say, C ′′ := 2C ′, then we see that it actually suffices
to prove that

2z ≥ z + C ′′/2z ,

for sufficiently large z, which is of course quite easy to prove. A more elementary approach simply
notices that for z ≥ log C ′, log(2z + C ′) ≤ z + 1, which reduces proving Equation (5) to proving
Equation (3) in the special case when C ′ = 1. Finishing from there is of course quite simple, though
it seems difficult to argue that this “three-logarithm proof” is simpler than the one- or two-logarithm
proofs.

Of course, if one is willing to forget about simplicity, then one sees that after taking k + 2
logarithms, proving Equation (1) amounts to proving that

2r ≥ log(k)(f (k)(r) + C ′) ,

for sufficiently large r, where we write log(k) for the iterated logarithm and f (k)(x) for the iterated
exponential. (E.g., f (3)(x) := 222x

.) Using the inequality log(k)(f (k)(r) + C ′) ≤ r + C ′′/f (k)(r) for
some appropriate constant C ′′, we see that in order to prove Equation (1), it suffices to show that
2r − r is eventually larger than C ′′/f (k)(r). In other words, in order to prove that an exponential is
superpolynomial, it suffices to beat Equation (2) simply by an additive C ′′/f (k)(y) for our favorite
choice of a constant k. This is rather striking, though certainly there is no need to bring large
towers of twos into this discussion.

Acknowledgments. Thanks to Huck Bennett, Sasha Golovnev, and Bobby Kleinberg for tolerating
my overly enthusiastic ramblings about this. Thanks to Bobby Kleinberg and Michael Ngo for
identifying stupid typos in earlier versions of this work. Apologies to the speaker whose talk I
missed because I slept through my alarm after staying up all night writing this silliness.

4For completeness, we note that one can prove Equation (4) by, e.g., noting that for w ≥ 4C (and thus n = 2w ≥ 24C ,
just like the above), we have

2w = (2w/2)2 ≥ (w/2)2 = (w/4) · w ≥ Cw ,

as needed.
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