
Examples of reductions with interactive games

Noah Stephens-Davidowitz

June 9, 2023

These are supplemental notes in which I provide some examples of security proofs via a reduction
for cryptographic primitives whose security is defined in terms of an interactive game. They should
(hopefully) be helpful in showing you how to do the homework and in filling in some of the details
that I do not have the time to cover in lectures. In particular, the reductions that I typically do in
lecture and in the lecture notes tend to be rather complicated. The reductions below are meant to
be simple, to just illustrate the basics of how such reductions should look without having to worry
about additional subtleties.

For example, the multi-message semantic security game for secret-key encryption is an in-
teractive game because it involves back-and-forth communication between the adversary and the
challenger. In particular, in this game, the adversary (takes as input 1n and) sends two lists of plain-
texts m1,0, . . . ,mℓ,0 and m1,1, . . . ,mℓ,1. Then, the challenger samples a secret key k ← Gen(1n),
flips a coin b ∼ {0, 1}, and encrypts the messages from list b, i.e., sets c1 ← Enc(k,m1,b), . . . , cℓ ←
Enc(k,mℓ,b). It then sends the ciphertexts c1, . . . , cℓ to the adversary, and the adversary responds
with a bit b′. The adversary wins if b = b′.

The basic idea of reductions in this setting is still the same. In order to prove that some
construction X is secure under the assumption that Y is secure, we show that an adversary that
breaks X could be used to break Y . (Always make sure that you have the direction correct!)
However, when we wish to use an adversary A that is playing one of these interactive games in
order to break some other scheme, we can’t just write something like b′ ← A(c1, . . . , cℓ), because
A doesn’t just take an input and return an output. Instead, A interacts—it first sends some stuff,
then it receives some stuff, and then it sends some stuff, etc. I.e., A likes to have conversations
(the formal terminology is a protocol, as we will see later), in which whatever it says now depends
on everything that’s been said to it and everything it’s said to us (and any coins flipped by A,
including coins flipped earlier in the conversation).

We typically describe reductions B that use such an adversary A with language like “B first re-
ceives the first message sent byA, consisting of two lists of plaintextsm1,0, . . . ,mℓ,0 andm1,1, . . . ,mℓ,1.
B then [does some crazy stuff in order to really cleverly choose some ciphertexts c1, . . . , cℓ] and sends
c1, . . . , cℓ to A, receiving in response b′. . . ” In other words, we describe how B will interact in a
conversation with A. If B is itself playing an interactive game, then we will also describe any mes-
sages that B sends to the challenger. E.g., B might send the lists m1,0, . . . ,mℓ,0 and m1,1, . . . ,mℓ,1

to its challenger and use the response from the challenger to choose c1, . . . , cℓ. We therefore end up
with a conversation between three parties, with B in the middle.

(If one wants to be super-duper formal and describe such interactive adversaries A as a plain
old algorithm, then one can do so. For example, one can define the adversary in the many-message
semantic security game as an algorithm A that, when it takes as input (0, 1n) (here, the zero

1

represents the fact thatA has sent zero messages so far) outputs two lists of plaintextsm1,0, . . . ,mℓ,0

and m1,1, . . . ,mℓ,1, AND a state σ. (Think of σ as the memory of A. I.e., A might have performed
some crazy computations to choose his plaintexts mi,b, and σ can record some information about
that.) On input (1, (c1, . . . , cℓ), σ), A outputs a bit b′. One can then define multi-message semantic
security in terms of an experiment in which this algorithm is called twice, first on input (0, 1n) and
then on input (1, (c1, . . . , cℓ), σ), where the ci are sampled as in the security game. But this is not
very intuitive.)

When interactive games are defined in terms of oracles (such as in the security game for signa-
tures), we may view the oracle queries made by A as messages passed to B. So, we write something
like “For each signing query m made by A, B [does some crazy computation to compute some
signature σ, possibly involving interaction with its own oracles], and responds with σ.

Below, I do some examples.

Claim 1. Let (Gen,Enc,Dec) be a many-message semantically secure secret-key encryption scheme,
and define (Gen′,Enc′,Dec′) as follows.

• Gen′ = Gen.

• Enc′(k,m): Set c← Enc(k,m), and output c|c. (I.e., a ciphertext of Enc′ is just a ciphertext
of Enc written twice.)

• Dec′(k, c|c) = Dec(k, c).

Then, (Gen′,Enc′,Dec′) is many-message semantically secure.

Proof. Suppose for contradiction that (Gen′,Enc′,Dec′) is not semantically secure, so that there
exists an adversary A and non-negligible ε(n) such that A wins the semantic security game against
(Gen′,Enc′,Dec′) with probability 1/2 + ε(n). Then, we construct an adversary B that breaks
(Gen,Enc,Dec) as follows.
B takes as input 1n and passes this to A. A responds with two lists of plaintexts M0 :=

(m1,0, . . . ,mℓ,0) and M1 := (m1,1, . . . ,mℓ,1). B simply sends M0 and M1 to its challenger, receiving
in response c1, . . . , cℓ, where ci ← Enc(k,mi,b) for k ← Gen(1n) and b ∼ {0, 1}. B then sends
c1|c1, . . . , cℓ|cℓ to A, receiving in response some bit b′. Finally, B simply outputs b′.

Clearly B is efficient. And, notice that the ciphertexts c1|c1, c2|c2, . . . , cℓ|cℓ sent toA in the above
reduction are distributed exactly as Enc′(k,mi,b), and that k is distributed exactly as k ← Gen′(1n)
(since the two key-generation algorithms are exactly the same). It follows that

Pr[b′ = b] = 1/2 + ε(n) .

Since ε(n) is non-negligible by assumption, this is a contradiction, as needed.

Claim 2. If (Gen, Sign,Ver) is a secure signature scheme where the length of a signature always
equals the length of the plaintext, then (Gen′,Sign′,Ver′) defined as follows is also a secure signature
scheme.

• Gen′(1n): (sk, vk)← Gen(1n/2). (I.e., we run Gen, but with the security parameter divided by
two for whatever reason.)

• Sign′(sk,m): Set σ ← Sign(sk,m), output σ′ := m⊕ σ.

2

• Ver′(vk,m, σ′): Output Ver(vk,m, σ′ ⊕m).

Proof. Suppose that there is an efficient adversary A that breaks (Gen′,Sign′,Ver′). I.e., A wins
the signature security game with probability ε(n) for some non-negligible ε(n). We construct an
adversary B that breaks the signature security game against (Gen, Sign,Ver) as follows.
B takes as input 1n and a verification key vk and sends 12n and vk to A. Then, each time that

A makes a signing query mi, B passes the signing query mi to its own signing oracle, receiving in
response a signature σi. B computes σ′

i := σi ⊕m and sends σ′
i to A. Eventually, A gets tired of

making signing queries and outputs (m′, σ′). B outputs (m′, σ′ ⊕m′).
Clearly B is efficient. We claim that B wins the signature game against (Gen, Sign,Ver) with

probability exactly ε(2n), which is non-negligible. Indeed, notice that (vk, sk) is distributed exactly
as the output of Gen′(12n) and that the signatures σ′

i are distributed exactly as Sign′(sk,mi).
Therefore, the probability that Ver′(vk,m′, σ′) = 1 and m′ /∈ {m1, . . . ,mq} is exactly ε(2n), which
is non-negligible. Finally, notice that Ver′(vk,m′, σ′) = Ver(vk,m′, σ′⊕m′). The result follows.

Claim 3. Let (Gen,Enc,Dec) be a semantically secure public-key encryption scheme, and define
(Gen′,Enc′,Dec′) as follows.

• Gen′ = Gen.

• Enc′(pk,m): Set c ← Enc(pk,m), and output pk|c. (I.e., a ciphertext of Enc′ is just a ci-
phertext of Enc with the public key attached. Notice that if this were a secret-key encryption
scheme, then attaching the whole secret key to the ciphertext would be a bad idea :), but with
public-key schemes, this is fine.)

• Dec′(sk, pk|c) = Dec(sk, c).

Then, (Gen′,Enc′,Dec′) is also a semantically secure public-key encryption scheme.

Proof. Suppose for contradiction that there is an efficient adversary A that wins the (public-key)
semantic security game against (Gen′,Enc′,Dec′) with probability 1/2+ε(n) for non-negligible ε(n).
We construct an adversary B in the (public-key) semantic security game against (Gen,Enc,Dec) as
follows.
B takes as input 1n and pk, where (sk, pk) ← Gen(1n). It simply passes 1n and pk to A. A

responds with two plaintexts m0,m1. B simply passes m0 and m1 to its challenger, receiving in
response c ← Enc(pk,mb) for b ∼ {0, 1}. B sends pk|c to A, receiving in response a bit b′, and B
simply outputs b′.

Clearly, B is efficient. Furthermore, it is clear that Pr[b = b′] is exactly 1/2 + ε(n) (since the
public key pk and the ciphertext pk|c sent to A are distributed exactly as they are in the semantic
security game against (Gen′,Enc′,Dec′)).

3

