
Two-Party Computation and Oblivious Transfer

Noah Stephens-Davidowitz

June 9, 2023

1 Secure computation

We now turn to the topic of secure computation, which will be the last major topic of this course.
The idea is as follows. There are ` parties, P1, . . . , P`, each with its own private input x1, . . . , x`.
They wish to compute a function (z1, . . . , z`) = f(x1, x2, . . . , x`), in such a way that Pi learns
zi “but nothing more.” For example, the parties might be companies and the xi might be the
maximum they’re each willing to spend on some good that is up for auction. The zi could reveal
whether or not you have won the auction. I.e., zi = 1 if xi > xj for all j 6= i and xi = 0 otherwise.

We will focus mostly on the case ` = 2, i.e., the case in which there are two parties Alice and
Bob who wish to jointly and securely compute some function (zA, zB) = f(xA, xB). Cryptographers
often simply call this two-party computation (2PC) or secure two-party computation. (The special
case in which only one party receives any output is often called either secure function evaluation
(SFE) or private function evaluation (PFE), but we will not make this distinction.)

Of course, to make this formal, we need to specify what it means that “Alice learns nothing
except zA and Bob learns nothing except zB.” We formalize this in the same way that we did in
the case of zero-knowledge proofs: using simulators. Here is the formal definition.

Definition 1.1. A protocol Π = (A,B) between two efficient parties A,B computes a functionality
f = (fA, fB) if outA〈A(1n, xA), B(1n, xB)〉 = fA(xA, xB) and similarly outB〈A(1n, xA), B(1n, xB)〉 =
fB(xA, xB).

Π securely computes a functionality f = (fA, fB) against honest-but-curious adversaries if it
computes f and there exist PPT simulators SA and SB such that for every PPT adversary E there
exists negligible ε(n) such that for all xA, xB,

Pr[E(1n, SA(1n, xA, fA(xA, xB))) = 1]− Pr[E(1n,ViewA〈A(1n, xA), B(1n, xB)〉) = 1] ≤ ε(n) ,

and similarly,

Pr[E(1n, SB(1n, xB, fB(xA, xB))) = 1]− Pr[E(1n,ViewB〈A(1n, xA), B(1n, xB)〉) = 1] ≤ ε(n) .

More succinctly, (SA(1n, xA, fA(xA, xB))) ≈c ViewA〈A(1n, xA), B(1n, xB)〉, and similarly for B.

The intuition behind this definition is the same as the intuition behind the definition of zero
knowledge that we saw when we studied zero-knowledge proofs. It says that “anything that Alice
learned from interacting with Bob, she could have generated herself, given only her input xA and
her output fA(xA, xB).” (Or, more accurately, she can produce something that is computationally

1

indistinguishable from what she learned from interacting with Bob.) In that sense, “she learns
nothing except for fA(xA, xB).”

Notice that this security definition depends crucially on f . E.g., if fA is a function such that
fA(xA, xB) reveals a lot of information about xB, then the security notion is quite a bit weaker, in
the sense that we will give the simulator fA(xA, xB), which contains a lot of information about xB.
This is of course necessary, since correctness requires that “Alice learns at least as much information
about xB as she learns from fA(xA, xB).”

We say that this security only holds against honest-but-curious adversaries because we only
required the simulator above to output a view that is indistinguishable from the view of an honest
Alice A (and likewise for Bob). We will later see a more sophisticated definition that allows for the
possibility that a malicious Alice might deviate from the protocol. In fact, if we have time, in one of
our last lectures, we will show how to convert any protocol that is secure against honest-but-curious
adversaries into one that is secure against malicious adversaries.

We sometimes break the security definition up into “security for Alice” and “security for Bob.”
Notice that security for Alice means that Bob’s view can be simulated by a simulator SB, and
security for Alice means the Alice’s view can be simulated. In other words, Alice is happy if Bob
learns nothing that he’s not supposed to—i.e., if Bob’s view can be simulated—and Bob is happy
if Alice learns nothing but what she is supposed to.

1.1 Which functions can we compute?

Of course, it is natural to ask which functions f can be computed securely.
We will see that the answer is any efficiently computable function! Perhaps this actually isn’t

very surprising given what we’ve already seen. For example, maybe you can think of a construc-
tion of 2PC from FHE? (The most naive construction of 2PC from FHE is actually not secure,
though. . .)

However, we won’t need anything nearly as fancy as FHE to do this. We will instead use a
seemingly much weaker primitive called oblivious transfer. (In fact, for multiparty computation
with three or more parties, in some sense “we won’t need anything.” It is possible to compute any
function in this setting securely without any computational assumptions (using Shamir’s secret-
sharing scheme)! But, for two-party computation, computational assumptions are necessary.)

2 Oblivious transfer

An oblivious transfer protocol is a special case of two-party computation for a function fOT =
(fOT,A, fOT,B) that might not seem tremendously useful. Specifically, Bob’s input is a single bit
b ∈ {0, 1}, and Alice’s input is a pair of bits m0,m1 ∈ {0, 1}. At the end of the protocol, Alice
learns absolutely nothing. I.e., fOT,A((m0,m1), b) = ⊥. (This ⊥ symbol is pronounced “bottom”
and it is often used to represent the empty output. The LATEX code for this is \bot. The ⊥ symbol
is sometimes also used to represent a party refusing to do something or aborting a protocol—e.g., if
a decryption algorithm determines that a ciphertext is malformed, it might output ⊥.) Bob learns
mb, i.e., fOT,B((m0,m1), b) = mb.

In other words, in an oblivious transfer protocol, Bob “requests either m0 or m1 (but not
both!), and Alice sends the appropriate message to Bob, while somehow remaining oblivious to
whether Bob requested m0 or m1.” Security for Bob says that “Alice is in fact oblivious”—i.e.,

2

there exists a simulator SA that takes as input 1n,m0,m1 (but not b!) and produces a view that is
computationally indistinguishable from Alice’s view in a true run of the protocol with Bob. Security
for Alice says that “Bob learns mb but nothing else (particularly nothing about m1−b)”—i.e., there
exists an efficient simulator SB that takes as input 1n, b, and mb (but not m1−b!) and produces a
view that is computationally indistinguishable from Bob’s view in a true run of the protocol with
Alice. Though this might not seem useful, oblivious transfer turns out to be very important.

In the next couple of lectures, we will prove the following theorem, which says that “fOT is
complete for 2PC.” In fact, we will give two very different proofs of this theorem, yielding two very
different protocols.

Theorem 2.1. If there exists a protocol for oblivious transfer (i.e., a protocol that securely computes
fOT against honest-but-curious adversaries), then for any efficiently computable function f , there
exists a protocol that efficiently computes f (against honest-but-curious adversaries).

2.1 Constructing OT—a thoroughly unsatisfying protocol

In this lecture, we will simply show how to build OT. The protocol that we come up with will be
extremely unsatisfying in the sense that, while it is secure against honest-but-curious adversaries,
there will be a really really really obvious way for a very slightly malicious Bob to completely break
the security of the scheme. So, we will aggressively exploit the fact that we only want security
against honest-but-curious adversaries.

Anyway, here’s how the construction goes. We will need to use the following primitive. Intu-
itively, this is a public-key encryption scheme in which there is a way to “generate a useless public
key.” I.e., there should be a way to generate a public key without being able to decrypt. (We
will not use this primitive for anything else in this course, though it is rather interesting in its
own right.) Notice that we insist right in the definition that the underlying scheme (Gen,Enc,Dec)
should be correct and semantically secure, since we’re not really interested otherwise.

Definition 2.2. A PPT algorithm OGen is an oblivious key-generation algorithm for a correct
and semantically secure public-key encryption scheme (Gen,Enc,Dec) if it satisfies the following
two properties.

• (Obliviousness.) For any PPT algorithm A there exists negligible ε such that for any two
plaintexts m0,m1,

Pr
r∼{0,1}`,b

[pk = OGen(1n; r), A(1n, r,Enc(pk,mb)) = b] ≤ 1/2 + ε(n) .

In other words “the encryption scheme with a public key generated by OGen remains semanti-
cally secure even if you know the randomness r that was used to generate the key.” Including
the randomness here is very important.

• (Indistinguishability.) For any PPT A, there exists negligible ε such that

Pr[A(1n,OGen(1n)) = 1]− Pr[(pk, sk)← Gen(1n), A(1n, pk) = 1] .

In other words, a public key generated by OGen is computationally indistinguishable from a
public key generated by Gen.

3

Many of the public-key encryption schemes that we have seen have an OGen algorithm associated
with it. We will run through them quickly below.

• Remember that the ElGamal encryption scheme has as its public key (g, h = ga), and its
secret key is the discrete logarithm a. To “obliviously” generate a public key, simply sample
h uniformly at random, rather than sampling its discrete logarithm a. (E.g., say that the
group is Z∗p for simplicity. Then, it is easy to sample a random element h in Z∗p without
the associated discrete logarithm, by simply sampling a uniformly random element from
{1, . . . , p − 1}.) In this case, the obliviously generated key is identically distributed to an
honestly generated key, and obliviousness follows from the security of the original scheme.

• The Goldwasser-Micali encryption scheme has as its public key (N = pq, y), where y is a
quadratic non-residue modulo N (with Jacobi symbol equal to one), and the secret key was
p, q. You might try to obliviously sample a public key by sampling N without knowing the
factorization, but this is problematic because it is not known how to sample N that has
exactly two prime factors (or that it is indistinguishable from an integer with exactly two
prime factors) without knowing the factorization. Instead, simply sample N as normal, but
take y to be a quadratic residue instead of a non-residue. Under the quadratic residuosity
assumption, this is indistinguishable from an honestly generated public key. And, when we
proved security of this scheme, we saw that if y were a quadratic residue, then the ciphertext
is independent of the plaintext, so that this is certainly oblivious (even if you know the
factorization of N).

• The Regev encryption scheme has as its public key (A, b := As + e mod q). To sample a
public key obliviously, simply sample b ∼ Zm

q instead. The LWE assumption tells us that
these two public keys are computationally indistinguishable. And, when we proved security of
the Regev encryption scheme, we showed that, when the public key is replaced by uniformly
random elements, the ciphertext is (statistically close to) independent of the plaintext.

Now, here’s the protocol. We assume that (Gen,Enc,Dec,OGen) is a semantically secure PKE
scheme with an oblivious key-generation algorithm.

Alice Bob
INPUT: 1n,m0,m1 INPUT: 1n, b

(skb, pkb)← Gen(1n), pk1−b ← OGen(1n)
pk0, pk1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c0 ← Enc(pk0,m0), c1 ← Enc(pk1,m1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

OUTPUT Dec(skb, cb)

Intuitively, this protocol is secure for Bob because Alice cannot distinguish an obliviously gen-
erated key from an honestly generated key. And, the protocol is secure for Alice because, if Bob
behaves honestly, then pk1−b was sampled obliviously, and it follows that c1−b is indistinguishable
from, e.g., an encryption of zero, even from the perspective of Bob, who of course knows the random
coins used to sample pk1−b.

4

Of course, this is quite unsatisfying, since we are really really really relying on the assumption
that Bob behaves honestly. If he is willing to behave even slightly maliciously, then there is an
obvious attack: Bob can just sample both pk0 and pk1 from the original Gen algorithm so that he
has the secret key for both! Then, he can decrypt both of Alices plaintext m0,m1! We will show
later how to convert any 2PC protocol that is secure in the honest-but-curious model to one that is
secure in a fully malicious model. So, we can formally get away with this rather silly construction.
We will also see a less silly construction below.

Anyway, let’s prove security formally in the honest-but-curious model, even if it’s a little un-
satisfying.

Theorem 2.3. If (Gen,Enc,Dec,OGen) is a semantically secure PKE scheme with an oblivious key-
generation algorithm, then the above oblivious transfer protocol is secure against honest-but-curious
adversaries.

Proof. We need to show a simulator for Alice SA and a simulator for Bob SB.
I’m going to be very pedantic here—more pedantic than I normally am and more pedantic than

I expect you to be on the homework—by explicitly describing the views of the two parties and the
simulated views. While we normally don’t bother to do this, you should always be sure that a
proof provides enough information that it should be pretty easy (if tedious) to fill in the remaining
detail.

We will do Bob first, since he is more interesting in this case. The view of Bob consists of
his input 1n, b, the randomness rb used to run Gen, the randomness r1−b used to run OGen, the
resulting keys (skb, pkb) and pk1−b and the ciphertexts c0, c1 sent by Alice. The simulator for Bob
SB takes as input 1n, b, and mb, samples (skb, pkb)← Gen(1n) and pk1−b ← OGen(1n). It then sets
cb ← Enc(pkb,mb) and c1−b ← Enc(pk1−b, 0) (there is nothing special about 0 here) and outputs
the view (1n, b, rb, r1−b, skb, pkb, pk1−b, c0, c1).

Clearly SB is efficient. The fact that the view produced by SB is indistinguishable from the
view of Bob in an honest run of the protocol follows from the obliviousness of OGen. In particular,
let c′1−b ← Enc(pk1−b,m1−b) and c′b := cb, and suppose that there exists an efficient distinguisher E
such that

ε(n) := Pr[E(1n, b, rb, r1−b, skb, pkb, pk1−b, c0, c1) = 1]−Pr[E(1n, b, rb, r1−b, skb, pkb, pk1−b, c
′
0, c
′
1) = 1]

is non-negligible. Notice that this is exactly the game of distinguishing the simulated view from a
true view. Then, we build an adversary E ′ in the obliviousness game that behaves as follows. E ′
takes as input randomness r∗ (remember that the randomness is included in the obliviousness game!)
and a ciphertext c∗ ← Enc(pk∗,m∗), where pk∗ := OGen(1n; r∗) and either m∗ = 0 or m∗ = m1−b.
It sets r∗1−b := r∗ and pk∗1−b := pk∗. It samples r∗b itself and sets (sk∗b , pk

∗
b) := Gen(1n; r∗b). It then

computes c∗b ← Enc(pk∗b ,mb) and c∗1−b := c∗. Finally, it runs E(1n, b, r∗b , r
∗
1−b, sk

∗
b , pk

∗
b , pk

∗
1−b, c

∗
0, c
∗
1)

and outputs the resulting bit (i.e., it outputs 1 if E outputs 1 and 0 otherwise).
Clearly, E ′ is efficient. Furthermore, when m∗ = 0, the input to E is distributed exactly as

(1n, b, rb, r1−b, skb, pkb, pk1−b, c0, c1), and when m∗ = m1−b, the input to E is distributed exactly as
(1n, b, rb, r1−b, skb, pkb, pk1−b, c

′
0, c
′
1). It follows that the advantage of E ′ in the obliviousness game

is exactly ε(n), which contradicts the assumption that OGen was oblivious.
Now, let’s do Alice. Alice’s view consists of the following: her input 1n,m0,m1, Bob’s mes-

sage pk0, pk1, the randomness s0, s1 used to run the encryption algorithm twice, and the cipher-
texts c0 ← Enc(pk0,m0; s0), c1 ← Enc(pk1,m1; s1). The simulator for Alice SA takes as input

5

1n,m0,m1. It then samples pk0 ← OGen(1n) and pk1 ← OGen(1n) (we could also use the Gen
algorithm—the resulting keys will be indistinguishable by definition—but somehow using the OGen
algorithm seems nicer to me). It then samples randomness s0, s1 for the encryption algorithm
and computes c0 ← Enc(pk0,m0; s0) and c1 ← Enc(pk1,m1; s1). Finally, it produces the view
(1n,m0,m1, pk0, pk1, s0, s1, c0, c1).

Clearly the simulator SA is efficient. To show that the view produced by this simulator is
indistinguishable from ViewA〈A(1n,m0,m1), B(1n, b)〉 (for any b), we consider S′A, which behaves
like SA except it replaces pkb with a public key sampled using the Gen algorithm. (Of course, SA
does not know b. We are only construction S′A as part of our analysis, so we are allowing its output
to depend on b.)

Notice that S′A produced a view that is identical to the view of Alice in a true run of the protocol
with Bob. Suppose there exists an efficient distinguisher E such that ε(n) := Pr[E(1n, SA(1n,m0,m1) =
1] − Pr[E(1n, S′A(1n,m0,m1, b) = 1] is non-negligible for some b. Then, we construct E ′ in the
indistinguishability game against OGen. E ′ takes as input 1n and pk∗ which is either sampled
by Gen or OGen. It sets pkb := pk∗ and pk1−b ← OGen(1n), computes c0 ← Enc(pk0,m0) and
c1 ← Enc(pk1,m1), creates the resulting view for Alice, and runs E on it. E outputs a bit, and E ′
outputs the same bit.

Notice that, if pk∗ is sampled from Gen, then the view produced by E ′ is identical to the view
produced by S′A. If pk∗ is sampled from OGen, then the view produced is identical to the view
produced by SA. Therefore, the advantage of E ′ in distinguishing these two cases is exactly ε(n),
a contradiction.

3 2PC for a simple class of functions

Given what we did with FHE, it seems natural to try to build 2PC “one gate at a time.” Specifically,
it seems natural to first build 2PC for the special case of ⊕ and for ×. Then, if we want to compute
an arbitrary circuit f consisting of ⊕ and × gates, Alice and Bob could work gate-by-gate.

This idea will be used in one of our constructions. But, one has to be very careful how to imple-
ment it. To see why, suppose that Alice and Bob each have two bits as input xA,1, xA,2, xB,1, xB,2,
and suppose that they wish to compute, e.g., the function f(xA,1, xA,2, xB,1, xB,2) = ((xA,1⊕xB,1)×
(xA,2 ⊕ xA,2),⊥). If, in the process of computing this, either Alice or Bob learns xA,1 ⊕ xB,1, then
this will not be secure!

More generally, Alice and Bob should only learn the output f(xA, xB) of the final computation.
They should not learn the results of intermediate computation.

Below, we will nevertheless show protocols for ⊕ and ×. This does not immediately give a
protocol for all functions, but these protocols will illustrate the definition a bit and show some of
the ideas that we will use going forward. The protocol for ⊕ is particularly silly!

3.1 A silly secure protocol for ⊕

For bits xA, xB ∈ {0, 1}, let f(xA, xB) = (⊥, xA ⊕ xB). I.e., a protocol to compute f will result in
Alice learning nothing, and Bob learning xA ⊕ xB.

How do we compute this securely? Well, here’s the protocol.

6

Alice Bob
INPUT: 1n, xA INPUT: 1n, xB

xA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

OUTPUT xA ⊕ xB

In other words, Alice just sends her bit to Bob in the clear! That’s it.
To see why this is secure, notice that if Bob knows xB and a protocol teaches him z := xA⊕xB,

then he can compute xA = xB ⊕ z himself. In other words, the output of f⊕ reveals Alice’s input
to him. So, assuming Alice is happy to let Bob learn xA ⊕ xB, she might as well just send him xA.

Actually, this fact that ⊕ is trivially computable will prove very useful for us later.

3.2 A less silly protocol for × (i.e., AND)—and more generally, any gate

Finally, let’s see a protocol for f×(xA, xB) := (⊥, xAxB), i.e., a protocol in which Bob learns xA
AND xB and Alice learns nothing. We will need to use OT for this. (In fact, a protocol for AND
implies a protocol for OT, and vice versa.) More generally, we will see a protocol for any function
in which xA, xB ∈ {0, 1} are single bits.

To compute AND, Bob will simply use his input bit b := xB as his input bit in an OT protocol.
Alice will set m0 := 0 and m1 := xA. Then, they will run the OT protocol with these inputs.

Notice that Bob’s output will be 0 if xB is 0 and xA if xB = 1. This is exactly what AND does.
In other words, this protocol is correct.

And, security follows immediately from the security of the OT protocol. So, this works.
In fact, there is nothing special about AND here. We can compute any gate, i.e., any function

f = (fA, fB), where fB : {0, 1}2 → {0, 1} and fA = ⊥. (This is of course very far from computing
arbitrary functions, because these functions only allow Alice and Bob to take single bits as input!
We can, however, extend this to allow for fA : {0, 1}2 → {0, 1} as well by simply running the
protocol twice: once for Bob and once for Alice.) To do so, Alice simply sets m0 := fB(xA, 0) and
m1 := fB(xA, 1). In other words, she sets her first plaintext to be the output that Bob should get
if his bit xB is 0 and her second plaintext to be the output that Bob should get if xB = 1. Bob
again sets b := xB, and they engage in the OT protocol with these inputs.

Correctness and security are then immediate. In the next two lectures, we will see two very
different constructions that can handle arbitrary functions, not just individual gates.

4 A less unsatisfying protocol—Naor-Pinkas

Now that we have seen that oblivious transfer is useful, we will see a different construction that is
less unsatisfying (in my opinion).

I will, however, provide essentially no formal justification for preferring this protocol over the
ones that we have already seen. I will only show that it satisfies security in the honest-but-curious
model, which the above protocols also satisfied. (In fact, I won’t even show that since the proof
is nearly identical to the above proof.) And, this protocol does not satisfy the strongest notion of
security against malicious adversaries that we would like, so it’s not ideal. Instead, it lies somewhere
in between. From my perspective, it is interesting not because of the specific security definition

7

that it achieves, but just because it’s not as silly as the oblivious key-generation-based protocol. In
particular, there is no obvious way for Bob to cheat. (And, this can be formalized with an explicit
security definition showing that in some sense “Bob really cannot cheat in this protocol.” But, I
will not introduce this definition as it is rather specific and not the “right” definition of security
against malicious adversaries.)

Anyway, this protocol is due to Moni Naor and Benny Pinkas [NP01]. I think of it in the
following way: consider the oblivious key-generation-based protocol described above instantiated
with ElGamal encryption. In that protocol, Bob samples two keys, Ab = ga and A1−b ∼ G and
sends A0, A1 to Alice. He knows the discrete logarithm of one of these public keys (i.e., Ab = ga),
and he super-duper totally promises that he only knows the discrete logarithm of one public key
and definitely not the other. But, it’s a little hard to trust Bob when he claims that he doesn’t
just know both discrete logarithms.

So, (at least as I think of it), the Naor-Pinkas protocol starts with this idea: “what if we
could force Bob to choose A0, A1 in some way that guarantees that he cannot know both discrete
logarithms?”

Actually, there’s a relatively easy way to do this. Suppose that we force Bob to choose A1 such
that A1 = hA0 for some h ∈ G that we choose. Then, “Bob could only know the discrete logarithm
of A0 and A1 simultaneously if he knew the discrete logarithm of h.” In particular, if A0 = ga0 and
A1 = ga1 , then h = ga1−a0 .

Here is the protocol. It uses as its public parameters some cyclic group G with order p such
that DDH is hard over G.

Alice Bob
INPUT: 1n,m0,m1 ∈ G INPUT: 1n, d ∈ {0, 1}

h ∼ G
a ∼ Zp

h−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
A0 := gahd, A1 := gah1−d

A0, A1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Check that A1 = hA0.
b0, b1 ∼ Zp

B0 := gb0 , C0 := Ab0
0 m0, B1 := gb1 , C1 := Ab1

1 m1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
OUTPUT md = B−ad Cd

This protocol is secure in the honest-but-curious model for essentially exactly the same reason
that the oblivious key-generation-based protocol was secure (using ElGamal as the encryption
scheme). Intuitively, Bob chooses A0 and A1 so that he knows a such that ga = Ad, but logg A1−d =
a± logg h, so that “if Bob does not know logg h, then Bob cannot know logg A1−d.”

A formal proof of Alice’s security follows by noting that (B1−d, C1−d) = (gb1−d , gab1−dh±b1−dm1−d).
Given a and B1−d = gb1−d , D∗ := gab1−d is efficiently computable. So, (B1−d, C1−d) is indistin-
guishable from random if and only if (B1−d, (D

∗)−1C1−d) = (gb1−dh±b1−dm1−d) is indistinguishable
from random. But, this is exactly an ElGamal ciphertext with public key h (or h−1, depending
on d). So, this is indistinguishable from random. (That was definitely not a formal proof—just a

8

sketch of what one would look like.)
Security for Bob is information-theoretic. Indeed, nothing in Alice’s view depends on d at all.

In particular, A0 is a uniformly random group element and A1 = hA0, regardless of d. So, we can
simulate Alice’s view perfectly simply by sampling A0 uniformly at random, setting A1 = A0h (and
using Alice’s input to compute all other values in the obvious way).

5 A crazy protocol due to Rabin

The original oblivious-transfer paper is due to Michael Rabin [Rab81] (whom we know and love
from having studied Rabin’s trapdoor function FN (x) := x2 mod N—which uses a similar idea to
the construction below). Rabin had an entirely different definition of oblivious transfer, which I
personally find to be really rather crazy (in a good way). I therefore want to share it with you :).

In fact, Rabin did not define anything formal at all because this was 1981—i.e., “prehistoric
cryptography” before we had formal definitions. Instead, Rabin gave what would now be considered
to be an informal description of a primitive as follows: Alice has some plaintext bit µ ∈ {0, 1}. She
and Bob then engage in some protocol. At the end of the protocol, with probability 1/2 Bob will
output µ, and with probability 1/2 “Bob will not learn anything at all about µ.” Furthermore,
“Alice does not know whether Bob received µ.” This was the primitive that Rabin called “oblivious
transfer,” and he had a rather elaborate application of such a protocol to a problem that he called
“exchange of secrets.” To avoid confusion (or, well, to at least lessen confusion), I will refer to
Rabin’s notion as “blindfolded transfer” and use the phrase “oblivious transfer” to describe the
definition that we saw in the previous sections. (Unfortunately, there is still some ambiguity about
what one means when one says “oblivious transfer.” Usually people mean the definition that we
have already seen, but sometimes they mean what I am calling blindfolded transfer. Fortunately,
one can construct blindfolded transfer from oblivious transfer, and vice versa. So, the ambiguity
isn’t too impactful.)

This definition of blindfolded transfer can be made formal. However, that will take us a bit too
far afield. (Notice that this definition is not captured by our definition of two-party computation.
In particular, the functionality in blindfolded transfer is not the functionality (⊥, µ), nor is it the
functionality (⊥,⊥). Instead, it is somehow a “mixture” of both.) Instead, I will simply present
a version of Rabin’s original protocol without proving anything formal about it at all. I will then
show how to convert this protocol into an oblivious transfer protocol (as we defined it above). It
should be clear that the conversion process can be made generic—i.e., if we were to formally define
blindfolded transfer, then we would be able to convert any blindfolded transfer protocol into an
oblivious transfer protocol.

Anyway, here’s the protocol. It is crazy! We assume the existence of some semantically secure
public-key encryption scheme (Gen,Enc,Dec) with the property that the secret key sk is always a
pair of distinct primes sk := (p, q), the public key is always their product pk := N := pq, and µ is
in the plaintext space. (This can be accomplished, e.g., using Rabin’s trapdoor function :)—and
particularly the trapdoor permutation variant that we saw for homework. The protocol can also be
modified slightly to work with RSA or Goldwasser-Micali.) We also make the very minor assumption
that the secret key (q, p) works identically to the secret key (p, q) (i.e., Dec((p, q), c) = Dec((q, p), c)
for all p, q, c).

9

Alice Bob
INPUT: 1n, µ INPUT: 1n

(p, q,N)← Gen(1n)
N−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

x ∼ Z∗N , y := x2 mod N
y←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Find x′ ∈ Z∗N s.t. (x′)2 = y mod N
x′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

c← Enc(N,µ)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

IF x′ = ±x mod N , OUTPUT ⊥
ELSE

p′ := gcd(x− x′, N)
q′ := gcd(x+ x′, N)
OUTPUT µ := Dec((p′, q′), c)

Again, we will not prove any formal security properties of this protocol. But, let’s get some
intuition for what’s going on here. First, notice that because Alice knows p, q, Alice can in fact
efficiently compute x′ ∈ Z∗N such that (x′)2 = y mod N , using the ideas that we saw when we
studied Rabin’s trapdoor permutation. So that’s good.

Next, there are two cases to consider: either x′ = ±x mod N or x′ 6= ±x mod N . Since there
are four square roots of y total, each of these events happens with probability 1/2. (This is true
regardless of how Alice chooses to compute x′. From Alice’s perspective, since she only knows y, x is
a uniformly random element from the set of four square roots of y.) If x′ = ±x mod N , then Bob is
not particularly happy. In particular, Bob already knew that x and −x were square roots of y mod
N . So, at least intuitively, in this case Bob “does not learn anything from x′ and therefore should
not learn anything about µ.” On the other hand, if x′ 6= ±x mod N , then x and x′ are a “funny pair
of square roots modulo N” like the ones that we studied when we studied Rabin’s trapdoor function
(see the PKE lecture notes). In particular, we know that {gcd(x− x′, N), gcd(x+ x′, N)} = {p, q}.
So, in this case, Bob recovers the secret key (p, q) (or, well, either (p, q) or (q, p)), and will of course
successfully decrypt µ := Enc(N, c) in order to correctly output µ.

On the other hand, “from Alice’s perspective these two events look identical.” There are exactly
four possible square roots of y, and from Alice’s perspective, x is equally likely to be any of these
square roots. So, “Alice has no idea whether x′ = ±x mod N .”

Again, while the above is certainly not formal, it can be made formal. (E.g., one can use the
real/ideal paradigm to define a formal definition that captures this idea and then prove that the
above scheme does satisfy this definition, under the assumption that (Gen,Enc,Dec) is semantically
secure.)

5.1 From blindfolded transfer to oblivious transfer (sorry for the terrible names)

Now, let’s see how to convert Rabin’s protocol for blindfolded transfer into a good old-fashioned
oblivious transfer protocol. We will then actually formally prove security of this protocol.

Here is the protocol.

10

Alice Bob
INPUT: 1n,m0,m1 INPUT: 1n, b

FOR i = 1 . . . , n
(pi, qi, Ni)← Gen(1n)

N1, . . . , Nn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
x1 ∼ Z∗N1

, . . . , xn ∼ Z∗Nn

yi := x2i mod Ni
y1, . . . , yn←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

x′1 ∈ Z∗N1
, . . . , x′n ∈ Z∗Nn

s.t. (x′i)
2 = yi mod Ni

x′1, . . . , x
′
n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Sample i0, i1 randomly
with x′ib 6= ±xib mod Nib

and x′i1−b
= ±xi1−b

mod Ni1−b

(If no such i0, i1 exist, start over.)
i0, i1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

µ0, µ1 ∼ {0, 1}
c0 ← Enc(Ni0 , µ0), c1 ← Enc(Ni1 , µ1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
d0 := µ0 ⊕m0, d1 := µ1 ⊕m1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

p′ := gcd(xib − x′ib , Nib)
q′ := gcd(xib + x′ib , Nib),
µb := Dec((p′, q′), cb)
OUTPUT db ⊕ µb

In other words, Alice and Bob first run n of these blindfolded transfer protocols in parallel, so
that at the end of these many protocols, Bob presumably knows the factorization of many of the
integer Ni but does not know the factorization of others. (With probability 21−n, he will either
know all factorizations or no factorizations, in which case Bob tells Alice that he would like to start
over. This happens very rarely, so the protocol is efficient even though there is some small chance
that Alice and Bob must start over.) Bob will then ask Alice to encrypt m0 and m1 under two
public keys Ni0 and Ni1 , with the property that Bob knows the factorization of Nib but not Ni1−b

.
Anyway, let’s prove security.

Theorem 5.1. Assuming that (Gen,Enc,Dec) is semantically secure, the above protocol is secure
(against honest-but-curious adversaries).

Proof. We need to construct a simulator SA for Alice and a simulator SB for Bob. For simplicity,
here we will ignore unlikely event that the protocol must start over.

The simulator for Alice is relatively straightforward SA. It takes as input 1n,m0,m1, and
samples (pi, qi, Ni) ← Gen(1n) for i = 1, . . . , N . It then samples x′1 ∼ Z∗N1

, . . . , x′n ∼ Z∗Nn
and

sets yi := (x′i)
2 mod N . Then, it samples two uniformly random distinct indices i0, i1, samples

µ0, µ1 ∼ {0, 1}, and sets c0 ← Enc(Ni0 , µ0), c1 ← Enc(Ni1 , µ1) and d0 := µ0 ⊕m0, d1 := µ1 ⊕m1.
Finally, it outputs the resulting view.

The output of SA is actually distributed identically to the view that Alice sees in a true run of

11

the protocol. In particular, the yi, x
′
i are distributed identically in both cases. And, in both cases,

i0, i1 are independent of the yi and the x′i.
The simulator for Bob SB behaves as follows. It takes as input 1n, b,mb, and samples (pi, qi, Ni)←

Gen(1n) for i = 1, . . . , n. (Of course, the pi, qi will not be part of the view output by SB.) It samples
x1 ∼ Z∗N1

, . . . , xn ∼ Z∗Nn
, sets yi := x2i mod Ni, and computes square roots x′1 ∈ Z∗N1

, . . . , x′n ∈ Z∗Nn

with (xi)
′2 = yi mod Ni, using whatever process Alice uses to do this.

It then samples i0 and i1 uniformly at random subject to the constraint that xib 6= ±x′ib mod Nib

and x′i1−b
= ±x′i1−b

mod Ni1−b
.

Finally, it samples µb ∼ {0, 1}, sets cb ← Enc(Ni0 , µb) and c1−b ← Enc(Ni1 , µ1−1), db := µb⊕mb

and d1−b ∼ {0, 1}. Finally, it computes p′, q′ like Bob and outputs the view consisting of

(b,N1, . . . , Nn, x1, . . . , xn, y1, . . . , yn, x
′
1, . . . , x

′
n, i0, i1, c0, c1, d0, d1, p

′, q′, µb,mb) .

Intuitively, the output of SB is indistinguishable from a real view because it only differs from
the real view in c1−b. So, the assumed semantic security of the encryption scheme should imply that
the two views are computationally indistinguishable. We now prove this formally via reduction.

Suppose there exists some adversary E and bits b,m0,m1 such that

Pr[E(1n, SB(1n, b,mb)) = 1]− Pr[E(1n,ViewB〈A(1n,m0,m1), B(1n, b)〉) = 1] = ε(n)

for non-negligible ε(n). We construct an adversary E ′ in the semantic security game against
(Gen,Enc,Dec) as follows. E ′ takes as input a public key N∗. It first samples uniformly ran-
dom distinct indices i0, i1. It sets Ni1−b

:= N∗, and for all j 6= i1−b (including j = ib), it samples
(pj , qj , Nj)← Gen(1n).

For j /∈ {i0, i1}, it samples xj ∼ Z∗Nj
, sets yj := x2j mod Nj , and (using pj , qj) computes

x′j ∈ Z∗Nj
such that (x′j)

2 = yj mod Nj . It also samples xib ∼ Z∗Nib
, sets yib := x2ib mod Nib , and

samples random x′ib ∈ Z∗N such that (x′ib)
2 = yib mod Nib with x′ib 6= ±xib mod Nib (using pib , qib).

Then, it samples xi1−b
∼ Z∗Ni1−b

and x′i1−b
∼ {±xi1−b

. (Notice that this last step can be done

using just the public key Ni1−b
= N∗. This captures the intuitive idea that “Bob does not the

factorization of Ni1−b
.”)

E ′ then samples µb ∼ {0, 1}, sets cb ← Enc(Nib , µb), and db := µb⊕mb. It samples d1−b ∼ {0, 1},
sets m∗0 := d1−b⊕m1−b and m∗1 := d1−b, and sends (m∗0,m

∗
1) to its challenger, receiving in response

c∗ ← Enc(N∗,m∗b∗) for b∗ ∼ {0, 1}.
Finally, E ′ sets c1−b := c∗, calls E on the resulting view of Bob, and outputs whatever bit b′

that E outputs.
Clearly E ′ is efficient (though it does do a lot of pretty tedious stuff!). Furthermore, when

b∗ = 0, the input to E is distributed identically to ViewB〈A(1n,m0,m1), B(1n, b)〉. On the other
hand, when b∗ = 1, this is distributed identically to SB(1n, b,mb). It follows that

Pr[b′ = b∗] = Pr[b′ = 1 | b∗ = 1]/2 + Pr[b′ = 0 | b∗ = 0]/2

= Pr[E(1n,ViewB〈A(1n,m0,m1), B(1n, b)〉) = 1]/2 + 1/2− Pr[E(1n, SB(1n, b,mb)) = 1]/2

= 1/2 + ε(n)/2 .

This is a contradiction, so the two views must be indistinguishable, as needed.

Of course, the above protocol has the same “unsatisfying problem” that our original protocol
based on oblivious key generation had: there is an obvious way for Bob to cheat. In particular,

12

instead of choosing i1−b such that xi1−b
= ±xi′1−b

mod N , a malicious actor could just choose a

different i1−b, allowing it to decrypt both c1 and c2.
This can be largely mitigated by, e.g., having Bob choose two disjoint lists of indices i0,1, . . . , i0,n/3

and i1,1, . . . , i1,n/3. Alice can then sample pads for each index, µ0,1, . . . , µ0,n/3 ∼ {0, 1} and
µ1,1, . . . , µ1,n/3 ∼ {0, 1}, encrypt each pad µc,j under the key Nic,j , and set d0 := µ0,1 ⊕ · · · ⊕
µ0,n/3 ⊕m0 and d1 := µ1,1 ⊕ · · · ⊕ µ1,n/3 ⊕m1.

Then, intuitively, “for Bob to learn both m0 and m1, he would need to know 2n/3 distinct secret
keys, which happens with probability less than 2−n/100.” (Again, we do not bother to formalize
this because this modified protocol will still not satisfy the “correct” definition of security against
malicious adversaries.)

References

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, 2001. 8

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical report,
Harvard University, 1981. https://eprint.iacr.org/2005/187. 9

13

https://eprint.iacr.org/2005/187

	Secure computation
	Which functions can we compute?

	Oblivious transfer
	Constructing OT—a thoroughly unsatisfying protocol

	2PC for a simple class of functions
	A silly secure protocol for XOR
	A less silly protocol for AND—and more generally, any gate

	A less unsatisfying protocol—Naor-Pinkas
	A crazy protocol due to Rabin
	From blindfolded transfer to oblivious transfer (sorry for the terrible names)

