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1 Pseudorandom functions

In the last lecture, we saw how to build stateful semantically secure secret-key encryption using a
PRG. But, we still have not built a true semantically secure encryption scheme under our original
definition.

Now, we fix this by showing how to construct an efficiently computable pseudorandom function,
a PRF. Formally, it is easier to define “a pseudorandom function” as a keyed function, also known
as a function family, Fs(r), where s ∈ {0, 1}∗ and the length of the input r depends on the length
of s. This notation is formally equivalent to writing F (s, r), but we write Fs(r) to emphasize that
we think of s as the key and r as the input. When the key s is n bits long, our PRF will take n
bits as input and output `(n) bits. (One can be slightly more general and take m(n) bits of input
for any m(n) = poly(n), but it does not change much.)

The security of a PRF is defined in terms of the following two games. In one game, the adversary
A is given oracle access to Fs. I.e., the challenger samples s ∼ {0, 1}n, and A can make as many
queries as it likes (though the number of queries must of course be polynomially bounded, because
A must run in polynomial time) to Fs. Each query consists of an n-bit string x, and A receives in
response an Fs(x). Eventually A outputs either zero or one.

Super succinct (and convenient!) notation for this game is given by b′ ← AFs(1n) where
s ∼ {0, 1}n, which means “b′ is the output of A on input 1n with oracle access to Fs for s ∼ {0, 1}n.”
Giving A “oracle access” to Fs means that AFs is an algorithm that has access to an extra procedure
that computes Fs. The full game is shown below.

Adversary Challenger
INPUT: 1n INPUT: 1n

s ∼ {0, 1}n
FOR i = 1, . . . , q(n) ≤ poly(n)

xi ∈ {0, 1}n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fs(xi)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

b′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 1: The game in which A is given oracle access to Fs for s ∼ {0, 1}n.
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In the second game, the pseudorandom bits Fs(xi) are replaced by truly random bits yi ∼
{0, 1}`(n). Specifically, in response to each distinct query x, the challenger responds with a uniformly
random string y ∼ {0, 1}`(n). However, notice that in the game with Fs, if A makes the same query
x twice, it will get the same answer Fs(x) both times. So, the challenger does the same thing in
our new game. Specifically, it records the queries and makes sure to respond to duplicate queries in
a consistent manner. (This makes the game itself a little tedious to write out, but the challenger’s
code is literally just implementing the procedure “respond randomly unless you have seen this query
before, in which case give the same response that you gave previously.”)

Another way to view this is to consider a random function H : {0, 1}n → {0, 1}`(n). I.e., let
Hn,` := {H : {0, 1}n → {0, 1}`} be the set of all possible functions from n bits to ` bits. Then
H ∼ Hn,` is a random function. In other words, for every input x ∈ {0, 1}n H(x) is a uniformly
random and independent bit string of length `. We can describe our second game succinctly using
the notation b′ ← AH(1n) for uniformly random H ∼ Hn,`(n). Here is the game written out
formally.

Adversary Challenger
INPUT: 1n INPUT: 1n

s ∼ {0, 1}n
FOR i = 1, . . . , q(n) ≤ poly(n)

xi ∈ {0, 1}n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
IF xi = xj for some j < i,

yi := yj

ELSE yi ∼ {0, 1}`(n)
yi←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

b′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 2: The game in which A is given oracle access to H ∼ Hn,`(n).

(You might wonder why I did not simply have the challenger sample H ∼ Hn,`(n) and then
respond to each query xi with H(xi). This would yield an equivalent game. But, a random
function H is not efficiently computable in general! And, it will cause problems for us later if
our challenger does not run in polynomial time. So, we avoid this mess via a “lazy sampling”
technique. I.e., rather than choose a fixed random function H at the beginning of the game and
then computing H(x) repeatedly (which cannot be done efficiently), the challenger “only decides
what H(x) should be when she needs to.”)

With this, we can define a PRF. Notice that the security definition is exactly the same as saying
“no PPT adversary has non-negligible advantage in distinguishing the first game above from the
second game above.” We have just used this very convenient oracle notation A· to write that quite
succinctly.

Definition 1.1 (Pseudorandom function). A function Fs : {0, 1}n → {0, 1}`(n) for s ∈ {0, 1}∗ and
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n := |s| is a pseudorandom function (PRF) if it satisfies the following.

1. Efficiently computable. There is a PPT algorithm A such that A(s,x) = Fs(x) for all
integers n ∈ N, keys s ∈ {0, 1}∗, and inputs x ∈ {0, 1}|s|.

2. Pseudorandom. For all PPT algorithms A, there exists a negligible function ε(n) such that
for all n ∈ N, ∣∣ Pr

s∼{0,1}n
[AFs(1n) = 1]− Pr

H∼Hn,`(n)

[AH(1n) = 1]
∣∣ ≤ ε(n) .

2 The GGM construction of a PRF from a PRG

We now show how to build a PRF from a PRG. The (elegant) construction that we will use is due
to Goldreich, Goldwasser, and Micali [GGM86], and is typically just called the GGM PRF.

To get some intuition for the construction, let’s recall our idea from last class for “getting more
pseudorandom bits” out of a PRG. I.e., given a PRG G that maps n bits to 2n bits, we define G0(s)
and G1(s) as the first n bits of the output and the second n bits of the output respectively. Then,
to get rn pseudorandom bits from G using a seed s0 ∼ {0, 1}n of length n, we define si := G0(si−1)
and xi := G1(si−1). Notice that these quantities are efficiently computable for polynomial i. Our
pseudorandom bits are then (x1, . . . ,xr) ∈ {0, 1}rn.

We can equivalently think of G and s as defining a function, FG,s(r) that takes as input r ∈ N
and outputs xr. Unfortunately, it takes time proportional to r to compute FG,s(r). We are therefore
effectively restricted to computing this function on polynomially many inputs r. Equivalently, we
can think of the domain of FG,s as {0, 1}m, where m = O(log n) so that |{0, 1}m| = poly(n).

To get a PRF, we need to handle n-bit inputs. I.e., instead of taking an n-bit random seed
s ∈ {0, 1}n and expanding it into poly(n) pseudorandom bits, a PRF in some sense takes an n-bit
random seed and expands it into ` · 2n pseudorandom bits! And we must have efficient access to
these bits.

The problem with FG,s is of course that it needs to compute all of the values s1, . . . , sr−1 before
computing xr. As a data structure, it is a linked list—where the entries in the list are indexed by
si and labeled with xi. To find the label xr of the rth node in the list, we use G0 to iteratively
compute the indices s1, . . . , si−1, before finally using G1 to compute xr. The GGM PRF replaces
this linked list with a balanced binary tree. (You can make a career in computer science just by
finding places to replace linked lists with trees :).)

Here is the construction. Let’s write s0 := G0(s) and s1 := G1(s). (Note that I have redefined
things here.) Then, s00 := G0(s0), s01 = G1(s0), s10 := G0(s1), and s11 := G1(s1). (Here and
below, we will use the notation rt for the concatenation of the bit strings r and t.) More generally,
sr0 := G0(sr) and sr1 := G1(sr). I.e., unraveling the definition, we have for r := (r1, r2, . . . , rn) ∈
{0, 1}n

sr := Grn(Grn−1(· · · (Gr1(s) · · · ))) .
Then, the GGM PRF Fs : {0, 1}n → {0, 1}n is defined as Fs(r) := sr. (It’s quite important

that the input size is fixed for fixed s! If we reveal sr for strings r with length, say, n− 1 as well,
then the adversary can certainly distinguish, say, sr0 from random, since sr0 = G0(sr). So, it is
crucial that an adversary making queries to Fs will only learn sr for strings r that have length
exactly n.) See Figure 3.

To prove the security of this construction, we will need the following lemma, which we proved
in the previous lecture.
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Figure 3: The GGM PRF.

Lemma 2.1. If G is a length-doubling PRG, then for any PPT A and any polynomial p(n), there
exists a negligible ε(n) such that for all n ∈ N,∣∣ Pr
s1,...,sp(n)∼{0,1}n

[A(1n, G(s1), . . . , G(sp(n))) = 1]− Pr
x1,...,xp(n)∼{0,1}2n

[A(1n,x1, . . . ,xp(n)) = 1]
∣∣ ≤ ε(n) .

Theorem 2.2. If G is a PRG, then Fs as defined above is a PRF.

Proof. The proof is by a hybrid argument. Let F0 be the oracle Fs sampled honestly. I.e., F0 has
a key s ∼ {0, 1}n sampled uniformly at random, and F0 then returns Fs(r) for any query r made
by the adversary A. F1 has two keys s0, s1 ∼ {0, 1}n sampled independently and uniformly at
random, and it behaves like the GGM PRF with the pseudorandom strings in the first level below
the root replaced by the pseudorandom s0 and s1. I.e., we “remove the root and split the tree into
two trees,” as in Figure 4.

More generally Fi has 2i keys, given by s00...0, . . . , s11...1 ∼ {0, 1}n all sampled uniformly and
independently at random, and to compute Fi, we compute the GGM PRF, except that we replace
the whole ith level of the tree by these random keys, rather than the pseudorandom elements in
the “honest” construction. Notice in particular that Fn is a purely random oracle.

So, if some adversary A has non-negligible advantage ε in breaking the PRF (i.e., if it distin-
guishes the PRF from a random oracle with probability ε), then there must be some index 1 ≤ i ≤ n
such that A distinguishes Fi from Fi−1 with probability at least ε/n.

It therefore suffices to show how to use an adversary A that distinguishes between Fi and Fi−1
in order to build an adversary B that breaks the security of the PRG. Or, rather, we will build
an adversary B that breaks the game described in Lemma 2.1. To do this, we must decide what p
should be.

Intuitively, we want to use the p strings x1, . . . ,xp that B receives as input to replace the strings
labeling the nodes in the ith row of Figure 3. Then, if the xj are random, we will faithfully reproduce
Fi. If they are pseudorandom, we will faithfully reproduce Fi−1. So, anA that distinguishes between
an Fi and Fi−1 will yield a B that breaks our PRG.
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Figure 4: The GGM tree with the root removed, used in Game 1. Here, s0 and s1 are both sampled
uniformly at random

The only problem is that the number of nodes in the ith row is 2i, which is superpolynomial for
large i. We need p to be polynomial in n. (This isn’t just a technical issue. Lemma 2.1 is simply
false for superpolynomial p.) To handle this, we will use the lazy sampling idea that we discussed
above. I.e., we will not assign a string to each node in the ith row right away. Instead, we will only
assign strings to nodes that are queried, and we will do so only when they are queried.

So, let p be a polynomial that bounds the number of queries that A makes to its oracle. B
receives as input the strings x1 := (x1,0,x1,1), . . . ,xp := (xp,0,xp,1) ∈ {0, 1}2n. (To be clear, we
have simply split the 2n-bit strings into pairs of n-bit strings for convenience.) When B receives its
first oracle query r ∈ {0, 1}n from A, it behaves as follows. Let r′ ∈ {0, 1}i−1 be the first i− 1 bits
of r. B sets sr′0 := x1,0 and sr′1 := x1,1. It then computes sr := Grn(Grn−1(· · ·Gri+1(srri) · · · )),
just like Fi.

For the jth oracle query r, we again define r′ ∈ {0, 1}i−1 to be the first i − 1 bits of r. If
sr′0, sr′1 have not been defined previously, then B sets sr′0 := xj,0 and sr′1 := xj,1. It then
computes sr := Grn(Grn−1(· · ·Gri+1(srri) · · · )) as before.

After at most p queries A will return either 0 or 1, and B simply outputs the same.
Clearly, B is efficient. To show that the advantage of B in the game defined in Lemma 2.1 is equal

to the advantage of A in the ith hybrid, we simply need to observe that (1) when (xj,0,xj,1) = G(sj)
for independent sj , then the responses of B to the queries made by A are distributed identically to
the responses of Fi−1; and (2) when the xj,b are uniformly and independently random, then we need
to show that the responses are distributed identically to the responses of Fi. Both observations
follow immediately from the definitions of Fi and the game in Lemma 2.1.
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