
Pseodorandom Generators

Noah Stephens-Davidowitz

June 7, 2023

1 Pseudorandom generators

Random bits X ∼ {0, 1}n are extremely useful in cryptography. For example, we have already seen
how to use a shared random string X ∼ {0, 1}n to encrypt a plaintext message m ∈ {0, 1}n with
perfect, information-theoretic security, using Shannon’s one-time pad. We were not particularly
satisfied with the one-time pad, however, because it requires the key to be as long as the message
(and because, if we were happy with the one-time pad, it would be more difficult to justify the
previous few lectures, which are leading up to some quite magical results).

This leads naturally to the question of whether we can generate pseudorandom bits. Informally,
we would like to generate a bit string Y ∈ {0, 1}m that “looks random” to an adversary. And, we
would like to do so non-trivially—i.e., we would like to “put only n random bits in as a seed but get
m� n pseudorandom bits out.” If we could do this, then we could at least use Shannon’s one-time
pad with a shorter key. In particular, we could use an n-bit key X ∈ {0, 1}n to generate a much
longer pseudorandom key Y ∈ {0, 1}m, which can then be used to send a much longer message or
many short messages via the one-time pad. (This is still not a very good encryption scheme! For
example, it only works for multiple messages if the sender and receiver both agree on the order of
the messages, which is rather strange. We will see a more clever scheme in the next few lectures.)

1.1 Two (equivalent) notions of pseudorandomness

Informally, a pseudorandom generator (or PRG for short) is a function that takes as input n random
seed bits and outputs m > n “pseudorandom” bits—i.e., bits that “are as good as random.” Let’s
try to make this formal.

Intuitively, a pseudorandom distribution over {0, 1}m should have some of the properties of the
uniform distribution over {0, 1}m. For example, suppose that Y ∼ {0, 1}m is sampled uniformly at
random. Then, if we look at any individual bit Yi, we must have Pr[Yi = 1] = 1/2. A pseudorandom
distribution should also have this property (or, well, we’ll be okay with Pr[Yi = 1] ≤ 1/2+negl(n)),
but it is clearly not enough on its own. E.g., we could take Y ∼ {0m, 1m} to be the string that
is all zeros with probability 1/2 and all ones with probability 1/2. It doesn’t seem reasonable to
call Y pseudorandom! For example, such a Y would not be useful as a key for Shannon’s one-time
pad. . .

What about the following stronger definition? For each i, suppose we ask that Pr[Yi = 1 | Y1 =
y1, . . . , Yi−1 = yi−1] = 1/2 for any y1, . . . , yi−1. I.e., no matter how we set the first i−1 bits, the ith
bit is unbiased. This definition is certainly strong enough—in fact it’s too strong! If Y satisfies this
definition, then it must be uniformly random itself. (It’s a nice exercise to prove this by induction,

1

and I often give this for homework.) This makes our definition pretty useless, since it means that
to sample such a distribution Y we need the seed length n to be at least m.

To make this idea non-trivial, we need to introduce the notion of a computationally bounded
adversary—just like we introduced computationally bounded adversaries in order to move from
Shannon’s perfectly secure encryption schemes to semantically secure encryption schemes. So,
suppose we try to make the above definition computational. We need some kind of computational
test that’s analogous to the information-theoretic statement that Pr[Yi = 1 | Y1 = y1, . . . , Yi−1 =
yi−1] = 1/2 for any y1, . . . , yi−1. The right notion here is (un)predictability. In particular, informally,
we say that an adversary A predicts Yi given Y1, . . . , Yi−1, if Pr[A(Y1, . . . , Yi−1) = Yi] ≥ 1/2 + ε for
some non-negligible advantage ε.

To make this formal, we of course have to introduce asymptotics and a security parameter
n. In fact, let’s just define an unpredictable PRG, rather than bothering to define unpredictable
distributions separately. (This definition is sometimes also called “next-bit unpredictability.” Note
that this is not the standard definition of a PRG, and not the one that we will typically use. Spoiler:
We will, however, see that this definition is equivalent to the standard definition.)

Definition 1.1 (Unpredictable PRGs). A function G : {0, 1}∗ → {0, 1}∗ is an unpredictable PRG
if the following hold.

1. Efficiently computable. There is a PPT algorithm A that computes G(x) given x.

2. Expanding. For every n ∈ N, there is a fixed output length m(n) > n such that |G(x)| =
m(n) for all x ∈ {0, 1}n.

3. Unpredictable. For any PPT algorithm B, there exists a negligible function ε(n) such that
for all positive integers n and all 1 ≤ i ≤ m(n), we have:

Pr
x∼{0,1}n

[Y := G(x), B(1n, (Y1, . . . , Yi−1)) = Yi] ≤ 1/2 + ε(n) .

We will see soon that this definition is quite useful, but if we want to use such a PRG to construct
a pseudorandom one-time pad, we should worry that it’s simply not strong enough. For example,
we know that the last bit cannot be predicted given the first m − 1 bits, but what if the first bit
is “predictable” given the last m− 1 bits? Such a distribution would not be useful for a one-time
pad. (Why not?) Or, more generally, what if the ith bit can be “predicted” given all of the other
bits, rather than just the i− 1 before it? It seems strange for our notion of pseudorandomness to
treat the ith bit differently from the (i+ 1)st bit.

And, even if no individual bit is predictable given all of the others, maybe there is some other
statistic of our distribution that makes it insecure. Perhaps the standard deviation of Y viewed
as an integer in binary is too small or perhaps Y fails some complicated statistical test. There’s
a whole field of statistics devoted to figuring stuff like this out! I think there’s something called
χ-squared test for example. I don’t know what that is, but what if someone does a χ-squared test
on our distribution? What if they do some other crazy statistical test that I’ve never heard of?
Are we willing to bet that our simple definition above will defeat all of statistics?!

A much more robust definition of pseudorandomness (which is also the standard definition!) is
the following. Intuitively, no polynomial-time test should distinguish Y from uniform bits X ∼
{0, 1}m.

2

Definition 1.2 (Strong PRGs (aka, PRGs)). A function G : {0, 1}∗ → {0, 1}∗ is a strong PRG if
the following hold.

1. Efficiently computable. There is a PPT algorithm A that computes G(x) given x.

2. Expanding. For every n ∈ N, there is a fixed polynomial output length m(n) > n such that
|G(x)| = m(n) for all x ∈ {0, 1}n.

3. Pseudorandom. For all PPT algorithms B, there exists a negligible function ε(n) such that

Pr
x∼{0,1}n

[B(1n, G(x)) = 1]− Pr
y∼{0,1}m(n)

[B(1n,y) = 1] ≤ ε(n) .

It might help when reading this definition to interpret an output of 1 from B as a guess that its
input is pseudorandom. In other words, the definition says that B “says G(x) looks pseudorandom”
essentially as often as she “says that the uniform distribution looks pseudorandom.” So, evidently, B
“can’t tell the difference” between the two distributions. (It might be tempting to say something like
“B is unlikely to say that G(x) looks pseudorandom,” so something like Pr[B(1n, G(x)) = 1] ≤ ε(n).
Unfortunately, this is nonsense, because we of course have to worry about, e.g., the adversary B
that just says that everything looks pseudorandom.)

1.2 Aside: Notes on a few different versions of “indistinguishability”

Our definition of pseudorandomness says that for every PPT B,

Pr[B(G(x)) = 1]− Pr[B(y) = 1]

is negligible. More generally, we say that two families of distributions Y n and Xn (families of distri-
butions and not just single distributions because we need a security parameter) are computationally
indistinguishable (or just indistinguishable) if for any PPT B,

Pr[B(1n,Xn) = 1]− Pr[B(1n,Y n) = 1]

is negligible. Then, our pseudorandomness definition simply says that G(x) is indistinguishable
from the uniform distribution on m bits when x ∼ {0, 1}n. (This is sometimes written succinctly
as

Xn ≈c Y n ,

where the symbol ≈c is read as “computationally indistinguishable.” However, this notation is
dangerous because it makes it very tempting to forget about the security parameter n entirely. We
will therefore avoid using this notation for most of this course, until we see some very fancy security
definitions in which this notation is really quite necessary.)

There are a few alternative forms of the above definition that are trivially equivalent, and we

often switch between them. A common one is to say that X
(0)
n is computationally indistinguishable

from X
(1)
n if for any PPT A,

Pr
b∼{0,1}

[b′ ← A(1n,X(b)
n) : b′ = b] ≤ 1/2 + ε(n)

for some negligible ε(n). In other words, “A cannot guess whether it has seen X
(0)
n or X

(1)
n with

non-negligible advantage over random guessing.” We saw a definition like this in the context of

3

semantic security, and it is a simple exercise to see that the two definitions are equivalent. (Make
sure you can do this exercise!)

Another variant uses an absolute value. I.e., instead of saying that

Pr[B(1n,Xn) = 1]− Pr[B(1n,Y n) = 1] ≤ ε(n)

for some negligible ε(n), we say that∣∣Pr[B(1n,Xn) = 1]− Pr[B(1n,Y n) = 1]
∣∣ ≤ ε(n) .

This definition is nice because it is clearly symmetric in Xn and Y n—i.e., Xn is indistinguish-
able from Y n if and only if Y n is indistinguishable from Xn. Fortunately, this definition is also
equivalent. (To see this, simply notice that if Pr[B(1n,Xn) = 1] were non-negligibly smaller than
Pr[B(1n,Y n) = 1], then Pr[B(1n,Xn) = 1] would be non-negligibly larger than Pr[B(1n,Y n) = 1],
where B is the algorithm that simply runs B and outputs the opposite of whatever B outputs. Of
course, if B is a PPT algorithm, then so is B.)

1.3 Proof of equivalence via a hybrid argument

As it turns out, unpredictability and pseudorandomness are equivalent. The proof uses a very
common technique called a hybrid argument, which will come up repeatedly in this course.

Theorem 1.3. A function G is an unpredictable PRG if and only if it is a (strong) PRG.

Proof. We need to prove two things. First, if G is predictable, then it is not a PRG. This direction
is easy, so we leave it as an exercise. (In other words, if there exists a predictor, then there exists
a distinguisher.)

Second, we need to show that if G is not a PRG, then it is predictable. Of course, we do this
via a reduction. I.e., suppose that some PPT B has non-negligible advantage ε(n) in distinguishing
G(x) from random. We claim that we can use this to construct a PPT algorithm P (for predictor)
that can predict the next bit with non-negligible advantage.

Fix some security parameter n and let m := m(n) and ε := ε(n). Before we even describe the
behavior of P, we need to find the index i that P will predict. Notice that, even if G(x) is not
pseudorandom, some bits of G(x) might still be unpredictable. E.g.. the last bit of G(x) might be
completely independent of all of the other bits. So, we need to somehow argue that at least one bit
is predictable—we will not be able to argue that all bits are. We do this via a hybrid argument,
like we saw in the previous lecture.

For any index 0 ≤ i ≤ m, we wish to define Y (i) ∈ {0, 1}m as the random variable whose “first
i bits are pseudorandom and last m − i bits are random.” Formally, to sample Y (i), we sample
x(i) ∼ {0, 1}n and set the first i bits of Y (i) to be the first i bits of G(x(i)). The last m − i bits
are uniformly random. These distributions are called hybrid distributions, since they are somehow
mixtures (i.e., hybrids) of the purely random and purely pseudorandom distributions.

Let pi be the probability that B outputs 1 on input Y (i). We claim that there must exist
an i such that pi − pi−1 ≥ ε/m. To see this, notice that pm − p0 = ε, since Y (m) is a purely
pseudorandom string and Y (0) is a purely random string. By assumption, the probability that B
outputs one on pseudorandom input is ε larger than the probability that it does so on random
input. I.e. pm − p0 = ε. Then, since pm − p0 = (p1 − p0) + (p2 − p1) + · · ·+ (pm − pm−1), at least
one of these differences must be as large as the average, which is ε/m.

4

We now have a specific bit i such that B distinguishes between the distribution Y (i−1) with
i − 1 pseudorandom bits (with the rest random) and the distribution Y (i) with i pseudorandom
bits. It remains to construct P that predicts the ith bit.

Given the first i bits of a pseudorandom string Y1, . . . , Yi−1 ∈ {0, 1} (and 1n), our predictor
P behaves as follows. It samples Y ∗i , . . . , Y

∗
m ∼ {0, 1} uniformly at random and runs B on input

(Y1, . . . , Yi−1, Y
∗
i , Y

∗
i+1, . . . , Y

∗
m). If B outputs 1 (i.e., if it “says that the input looks pseudorandom”),

then P guesses Y ∗i . Otherwise, it guesses 1− Y ∗i .
First, notice that P is efficient (assuming that B is efficient). Its running time is essentially

the same as the running time of B on an m-bit string. Since B runs in polynomial time and m is
polynomial in n, P runs in time polynomial in n, as needed. So, we only need to prove correctness.

Intuitively, this works because we know that B is more likely to output 1 when its ith bit is
“correct.” To make this formal, it helps to define p′i as the probability that B outputs 1 when its
input is the same as Y (i) in all bits except for the ith, and has the ith bit flipped. I.e., p′i is the
probability that B outputs 1 when it is given “the wrong ith bit.”1 Notice that the probability
that P guesses correctly is exactly

Pr[B(Y1, . . . , Yi−1, Y
∗
i , Y

∗
i+1, . . . , Y

∗
m) = 1 | Y ∗i = Yi]/2

+ Pr[B(Y1, . . . , Yi−1, Y
∗
i , Y

∗
i+1, . . . , Y

∗
m) = 0 | Y ∗i 6= Yi]/2

= pi/2 + (1− p′i)/2
= 1/2 + (pi − p′i)/2 .

We also have that pi−1 = (pi + p′i)/2 (i.e., “B’s behavior on a random bit is the average of its
behavior on the right bit and on the wrong bit”).

Therefore, P’s advantage is

(pi − p′i)/2 = pi − pi−1 ≥ ε/m .

Since ε is non-negligible and m = poly(n), this is also non-negligible, and we are done.

2 A PRG from any one-way permutation with a hardcore predi-
cate

Ideally, we would now like to show how to construct a pseudorandom generator (a rather strong ob-
ject!) from any one-way function (a seemingly much weaker object!). This very impressive feat was
was accomplished by H̊astad, Impagliazzo, Levin, and Luby [HILL99], but their construction and
proof are rather complicated. Instead, we allow ourselves an extra assumption and prove the result
for one-way permutations instead. This simpler construction is due to Blum and Micali [BM84].

A permutation is a function f : {0, 1}∗ → {0, 1}∗ that is length-preserving and bijective. I.e.,
for every x ∈ {0, 1}n, there is a unique y ∈ {0, 1}n such that f(x) = y. The key property that we
will use about permutations is that they map uniformly random n-bit strings to uniformly random

1I use this “the wrong bit” terminology very loosely. Y (i) is a random variable, and its ith bit could be undeter-
mined given the other bits. So, there’s no formal notion of “the wrong bit.” Still, I hope the terminology helps to
give some intuition for why the reduction works without being confusing. E.g., here, talking about “the wrong bit”
intuitively makes sense because, at least intuitively, we chose the index i specifically because the ith bit seems to
“depend significantly on the previous bits” (formally, because pi−pi−1 is large). In general, I (along with many other
authors) put words in “scare quotes” when they are meant to provide intuition but not to be interpreted formally.

5

n-bit strings. (In fact, this is true if and only if f is a permutation.) A one-way permutation is
a one-way function that is also a permutation. We assume that the one-way permutation comes
with a hardcore predicate P : {0, 1}∗ → {0, 1}. (In fact, we will not need one-wayness. We will
only need the assumption that P is a hardcore predicate. However, if a permutation has a hardcore
predicate, then it must be one way anyway.)

Blum and Micali’s construction works as follows. Given x ∈ {0, 1}∗, the Blum-Micali PRG
computes s0 := x, s1 := f(s0), s2 := f(s1), s3 := f(s2), . . . , sm(n)−1 := f(sm(n)−2), and outputs
(P (sm(n)−1), . . . , P (s0)). I.e., it outputs the hardcore predicates of the si in reversed order. (The
reversed order is simply more convenient for the proof. Obviously, if a string is pseudorandom,
then the reversed string is also pseudorandom.)

Theorem 2.1. If f is a permutation and b is a hardcore predicate for f , then the Blum-Micali
construction is a (strong) PRG.

Proof. By Theorem 1.3, it suffices to show that the output of the Blum-Micali PRG is unpredictable.
(This is why it is convenient to output the bits in reversed order. The unpredictability definition
treats a string and the reversed string differently.) Again, we do this by reduction. I.e., we assume
that we have an efficient predictor P that takes as input P (sm(n)−1), . . . , P (si) and outputs a
prediction b∗ with Pr[P (si−1) = b∗] = 1/2 + ε(n) for some non-negligible ε, and we show how to
use this to build an efficient adversary A that breaks the hardcore predicate P . I.e., A takes as
input f(x) for uniformly random x ∈ {0, 1}n and outputs b(x) with probability 1/2 + δ(n) for
non-negligible δ(n). In fact, we will achieve δ(n) = ε(n).

So, given s′i := f(x) ∈ {0, 1}n, A behaves as follows. It computes s′i+1 := f(si), . . . , s
′
m(n)

:=

f(s′m(n)−1). A then feeds the predicates P (s′m(n)), . . . , P (s′i) to P (together with 1n). It then simply
outputs P’s guess b∗.

First, notice that A runs in polynomial time (assuming that P does). So, we only need to show
that A has non-negligible advantage.

Now, here is an almost correct proof that A has advantage ε(n). Let’s imagine that we play
an “honest” predicting game with P. I.e., we first sample s0 ∈ {0, 1}n uniformly at random, set
s1 := f(s0), etc., give P her input P (sm(n)−1), . . . , P (si), and receive her prediction b∗ for P (si−1).
(This next sentence is not quite correct. See if you can spot the mistake.) If we just rename si−1
and call it x, and if we just rename si, . . . , sm(n)−1 to s′i, . . . , s

′
m(n)−1, then this is the same as the

game above. So, clearly b∗ = P (x) if and only if b∗ = P (si−1), since x = si−1.
The issue with the above argument is that x and si−1 are not the same. In particular, they

were sampled in very different ways. E.g., for some functions f , we could have si−1 = f i−1(s0) = 0
for all s0 ∈ {0, 1}n, which would clearly make the above argument invalid! To fix this, we need to
show that the distribution of the view of P in the world in which we play the “honest” game is the
same as the distribution of the view of P in the world in which B runs the above reduction using
P. (Here, the view of P is just her input. Sometimes, we will play more complicated interactive
games with our adversaries, in which case the view is everything that the adversary sees.) Then,
the probability that P outputs b∗ = P (x) in the honest game must equal the probability that
b∗ = P (si−1) in the simulated game created by B, since from the perspective of P, there is no
difference.

This is why we assumed that f is a permutation, which implies that the sj are uniformly
distributed for all j. (Recall that this was the key property of permutations that we said we would
need.) In particular, si−1 has the same distribution as x, which means that from P’s perspective,

6

she really is just playing the “honest” predicting game. Therefore, b∗ = P (si−1) with probability
1/2 + ε(n), as needed.

3 The big picture and the proof that we’re missing (actually, two
proofs)

We would like to conclude from the above that the existence of a one-way function implies the
existence of a PRG. Indeed, as we have mentioned a few times, this was proven in [HILL99].
However, there are two gaps in our proof.

The first gap is that we needed a one-way permutation, rather than a one-way function. This
is a very big gap! (In fact, it is believed that one-way permutations are strictly stronger objects
than one-way functions, in a certain precise sense.) However, we will simply ignore it in this class—
except to say that this can be fixed. So, if you believe that one-way functions exist, then you must
believe that PRGs exist, though we will not see the proof here.

Even assuming that we’re okay with one-way permutations, the other issue is that we assumed
not only the existence of a one-way permutation f , but also an associated hardcore predicate P !
Luckily, Goldreich and Levin proved that any one-way permutation can be converted into a one-way
permutation with a hardcore predicate [GL89].

References

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM J. Comput., 13(4), 1984. http://dx.doi.org/10.1137/

0213053. 5

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In STOC, pages 25–32, 1989. 7

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4), 1999. 5, 7

7

http://dx.doi.org/10.1137/0213053
http://dx.doi.org/10.1137/0213053

	Pseudorandom generators
	Two (equivalent) notions of pseudorandomness
	Aside: Notes on a few different versions of ``indistinguishability''
	Proof of equivalence via a hybrid argument

	A PRG from any one-way permutation with a hardcore predicate
	The big picture and the proof that we're missing (actually, two proofs)

