
The Goldreich-Levin Theorem

Noah Stephens-Davidowitz

June 7, 2023

(In my undergraduate cryptography course, I usually skip this lecture, as it’s a bit difficult.
Nevertheless, it’s a beautiful and important theorem with a beautiful proof. These notes follow
closely notes of Yael Kalai from a similar lecture that she gave when we co-taught a cryptography
class together at MIT.)

1 Recap of hardcore predicates

Remember that a hardcore predicate of a function f : {0, 1}∗ → {0, 1}∗ is an efficiently computable
predicate P : {0, 1}∗ → {0, 1} such that “it is difficult to compute P (x) given f(x).” More formally,
for any PPT A,

Pr
x∼{0,1}n

[b← A(1n, f(x)), b = P (x)] ≤ 1/2 + ε(n)

for negligible ε(n).
We saw that the existence of a hardcore predicate for an injective function f implies the existence

of commitment schemes and secure coin-flipping protocols. So, we already know that hardcore
predicates pretty useful. And, better still, we will use hardcore predicates to build secret-key
encryption (via pseudorandom generators and pseudorandom functions; it’s a long journey. . .).

We mentioned (but did not prove) that the most significant bit of the group exponentiation
function is hardcore, if the discrete logarithm is hard over the group in question. Indeed, there are
by now many results proving that certain predicates are hardcore for specific one-way functions. In
particular, these proofs exploit specific properties of the one-way function f in question in order to
show that, if there exists an efficient algorithm that guesses P (x) given only f(x) with probability
that is non-negligibly larger than 1/2, then there also exists an efficient algorithm that inverts f
with non-negligible probability.

These theorems are useful when you’re interested in working with a specific one-way function.
But, it would be much more convenient to show some universal way to get a hardcore predicate
from any one-way function.

The Goldreich-Levin Theorem essentially does that, with a very simple predicate. More for-
mally, it shows how to trivially modify any injective one-way function into one with a hardcore
predicate. (You can also think of the theorem as giving a “distribution of hardcore predicates,” i.e.,
Pw : {0, 1}∗ → {0, 1} such that it is difficult to compute Pw(x) given f(x) for uniformly random
x,w ∈ {0, 1}n.) The theorem is (of course) due to Goldreich and Levin, in 1989 [GL89].

1

2 Basic probability tools

Below, we will need three basic probabilistic tools below: the union bound, the Chernoff bound
(also called the Chernoff-Hoeffding bound), and Chebyshev’s inequality for pairwise independent
random variables.

All of these bounds are quite important in their own right—in cryptography, theoretical com-
puter science, and more broadly. So, they’re quite good to know, and it’s worth spending some
time to introduce them.

2.1 Union bound

Union bound is really quite simple, but it comes up so often that it’s worth giving it a name. In
particular, union bound says that “the probability that either event A or event B happens cannot
be larger than the sum of the probabilities of events A and B.” It is often convenient to apply it
to a long list of events E1, . . . , E` simultaneously.

Claim 2.1 (Union bound). For any events E1, . . . , E`,

Pr[∃i, Ei occurs] ≤
∑
i

Pr[Ei] .

We use this a lot, often without even bothering to name it. It is called the union bound presumably
because it bounds the probability that the union of all of the events happens.

The gigantic benefit of the union bound is that it comes with no restrictions whatsoever on the
events Ei. In particular, we don’t need any notion of independence whatsoever.

2.2 Chernoff bound

The Chernoff bound (or, at least, the version that we will work with) says that if you have many
independent1 bits z1, . . . , zm ∈ {0, 1} with Pr[zi = 1] = p, then their average value 1

m

∑
zi will be

very close to p with high probability. This can be used, e.g., to approximate p, or to determine
whether the zi are biased towards 0 or biased towards 1. (The constant 10 in the theorem is not
optimal.)

Notice that it is extremely important that the random variables zi are independent. E.g., if we
instead took (z1, . . . , zm) ∼ {0m, 1m} (i.e., if with probability 1/2 all of the zi are zero simultaneously
and with probability 1/2 they are all one simultaneously), then be bound would clearly be false.

Theorem 2.2 (Chernoff-Hoeffding bound). Let z1, . . . , zm ∈ {0, 1} be independent random vari-
ables with Pr[zj = 1] = p, and let Z :=

∑
zj. Then, for every η > 0,

Pr[|Z/m− p| ≥ η] ≤ 2e−η
2m/10 .

Here, we give a proof for completeness (and because I really like the proof).

1Remember that we say that random variables x1, . . . , xm are independent if “the distribution of xi does not
depend on the values taken by {xi : i 6= j}.” Specifically, for any y1, . . . , ym,

Pr[x1 = y1, x2 = y2, . . . , xm = ym] = Pr[x1 = y1] Pr[x2 = y2] · · ·Pr[xm = ym] .

2

Proof. We will prove that Pr[Z/m − p ≥ η] ≤ e−η
2m/10. A nearly identical proof shows that

Pr[Z/m− p ≤ −η] ≤ e−η2m/10. And, the result then follows by union bound. (In other words, the
event |Z/m − p| ≥ η is equivalent to the event that Z/m − p ≥ η or Z/m − p ≤ −η, so by union
bound, the probability of |Z/m− p| ≥ η is at most the sum of these probabilities.) For simplicity,
we assume p = 1/2. The proof for arbitrary p is similar but requires a bit more work.

The idea is to study the random variable etZ =
∏
j e

tzj for some t ∈ R that we will choose later,
depending on η. Because the zj are independent, we have that the expectation of the product is
the product of the expectations, i.e.,

E
[∏

j

etzj
]

=
∏
j

E[etzj] .

But, these expectations are easy to compute. Specifically, E[etzj] = et/2 + 1/2. Therefore, E[etZ] =
(et + 1)m/2m.

On the other hand, we also have

E[etZ] ≥ Pr[Z ≥ m/2 + ηm] · etm/2+tηm .

(This is known as Markov’s inequality, i.e., that for a non-negative random variable X ≥ 0 and
t ≥ 0, E[X] ≥ tPr[X ≥ t]. We typically use it in the form Pr[X ≥ t] ≤ E[X]/t.) Rearranging, we
see that

Pr[Z ≥ m/2 + ηm] ≤
(et + 1

et/2+tη

)m
/2m .

Finally, we choose t to minimize the right-hand side. In particular, taking et := (1/2 +η)/(1/2−η)
(noting that we may η < 1/2, since the theorem is trivial otherwise), we have

Pr[Z ≥ pm+ ηm] ≤
(

(1 + 2η)1/2+η(1− 2η)1/2−η
)−m

≤ e−mη2/3 ,

where the last inequality follows from the fact that (1+2η)1/2+η(1−2η)1/2−η/e−η
2/10 is a decreasing

function of η for 0 ≤ η ≤ 1/2.

Crucially, the Chernoff bound only works for independent zi. A very very common mistake that
people make in cryptography (and any field that uses a lot of probability) is to apply a result that
requires independence when they do not have it.

2.3 Chebyshev’s inequality

Chebyshev’s inequality (or, again, the version that we will see) gives a weaker bound than the
Chernoff bound, but it requires a weaker assumption. Specifically, Chebyshev’s inequality only
requires that the zi are pairwise independent, that is, that Pr[zi = 1 and zj = 1] = p2 for all i 6= j.
However, it could still be the case that, say, Pr[zi = 1 and zj = 1 and zk = 1] = 0. For example,
consider (z1, z2, z3) that are sampled uniformly from {(z1, z2, z3) ∈ {0, 1}3 : z1 ⊕ z2 = z3}. These
zj are pairwise independent but not independent.

More generally, random variables r1, . . . , rm are pairwise independent if for any i 6= j and any
si, sj , Pr[ri = si and rj = sj] = Pr[ri = si] Pr[rj = sj].

3

Theorem 2.3 (Chebyshev’s inequality). Let z1, . . . , zm ∈ {0, 1} be pairwise independent random
variables with Pr[zj = 1] = p, and let Z :=

∑
zj. Then, for every η > 0,

Pr[|Z/m− p| ≥ η] ≤ p(1− p)/(η2m) ≤ 1/(4η2m) .

Again, we provide a proof for completeness. It’s quite a bit simpler than the proof of the
Chernoff bound.

Proof. The trick here is to study E[(Z −mp)2] (i.e., the variance of Z). Notice that

E[(Z−mp)2] = E
[(∑

j

zj−mp
)2]

= E
[∑

j

z2j+
∑
i 6=j

zizj−2mp
∑
j

zj+m
2p2
]

= mp+
∑
i 6=j

E[zizj]−m2p2 .

Since the zi, zj are pairwise independent, we have∑
i 6=j

E[zizj] =
∑
i 6=j

E[zi]E[zj] = m(m− 1)p2 .

Therefore,
E[(Z −mp)2] = mp(1− p) .

(You might recognize this as the variance of a Binomial random variable.) Finally, (again, using
Markov’s inequality) we have

mp(1− p) = E[(Z −mp)2] ≥ Pr[|Z/m− p| ≥ η] · (ηm)2 .

Rearranging gives
Pr[|Z/m− p| ≥ η] ≤ p(1− p)/(η2m) ≤ 1/(4η2m) ,

as needed.

3 The Goldreich-Levin Theorem

We will need some notation. For two bit strings x,w ∈ {0, 1}n with x = (x1, . . . , xn) and w =
(w1, . . . , wn), we write 〈x,w〉 := x1w1 ⊕ · · · ⊕ xnwn. In other words, 〈x,w〉 is the parity of the
number of indices i such that xi = wi = 1. (This is also simply the inner product function over
Fn2 .)

Fix some function f : {0, 1}∗ → {0, 1}∗. Define g(x,w) := (f(x), w) where x and w have the
same length. (As defined here, g can only take inputs with even length, so that we can divide its
input into two equal-length strings. We would ideally like g to take arbitrary bit strings as input,
which we could do by just ignoring the last bit of the input if the input has odd length. But, we do
not worry about this here.) Notice that g is one-way if (and only if) f is one-way. Notice also that
g is injective if and only if f is injective, and g is a permutation if and only if f is a permutation.

Here is the theorem that we are going to prove.

Theorem 3.1 (Goldreich-Levin). If f is a one-way function, then the predicate P (x,w) := 〈w, x〉
is a hardcore predicate for g.

4

(Below is a long explanation of the proof and where it came from. Skip to the last section if
you just want to see the formal proof.)

We will of course prove this theorem via a reduction. So, suppose that there exists a PPT
adversary A with

Pr
x,w∼{0,1}n

[b← A(1n, f(x), w), b = 〈w, x〉] = 1/2 + ε(n)

for non-negligible ε(n). We want to construct an adversary that takes as input (1n and) y∗ := f(x∗)
for x∗ ∼ {0, 1}n and outputs x′ such that f(x′) = y∗ with non-negligible probability.

At a high level, there’s only one thing to try. Presumably, A′ is going to choose w1, . . . , w` ∈
{0, 1}n in some way, call A on input (f(x∗), wi), and somehow use the resulting output of A to try
to compute x.

However, before we even try to fill in the details, we already have a problem. Our assumption
only guarantees that A has some advantage ε(n) on input (f(x), w) for uniformly random w ∈
{0, 1}n and x ∈ {0, 1}n. But, we want to call A on input (f(x∗), wi) for many different wi ∈ {0, 1}n,
but one fixed value of x∗ ∈ {0, 1}n. What if A refuses to cooperate on our particular value of x∗?

To capture this, we define the following set:

GOOD := {x ∈ {0, 1}n : Pr
w∼{0,1}n

[b← A(f(x), w), b = 〈w, x〉] ≥ 1/2 + ε(n)/2} .

In other words, if x∗ ∈ GOOD, then A has non-negligible advantage in guessing 〈w, x∗〉 for random
w (but fixed x∗).

Claim 3.2.
Pr

x∼{0,1}n
[x ∈ GOOD] ≥ ε(n)/2 .

Proof. We have

1/2 + ε(n) = Pr
x,w∈{0,1}n

[b = 〈w, x〉 and x ∈ GOOD] + Pr[b = 〈w, x〉 and x /∈ GOOD]

≤ Pr[x ∈ GOOD] + 1/2 + ε(n)/2 ,

where we have used the fact that for x /∈ GOOD, the probability of success is less than 1/2+ε(n)/2
by definition. The result follows by rearranging.

In particular, the above claim tells us that, if ε(n) is non-negligible, then x∗ ∈ GOOD with
non-negligible probability. Therefore, it suffices to invert f with non-negligible probability in the
special case when x∗ ∈ GOOD.

In the following subsections, we will work our way up to the proof of the actual theorem by
proving the theorem in certain special cases.

3.1 First special case: 100% success

First, suppose that for x ∈ GOOD,

Pr
w∈{0,1}n

[b← A(1n, f(x), w), b = 〈w, x〉] = 1 .

5

(This is a very strong assumption!) Then, we can haveA′ behave as follows. Let ei := (0, . . . , 0, 1, 0, . . . , 0) ∈
{0, 1}n be the bit string with a 1 in its ith coordinate and zeros elsewhere. So, A′ simply runs
the algorithm A n times, on input (1n, y∗, e1), (1n, y∗, e2), . . . , (1n, y∗, en), receiving as output bits
x′1, . . . , x

′
n. The adversary A′ then simply outputs x′ := (x′1, . . . , x

′
n).

Clearly this version of A′ is PPT if A is PPT. By our (ridiculously strong) assumption, if
x∗ ∈ GOOD, then x′i = 〈x∗, ei〉, i.e., in this case x′ = x∗. So,

Pr[x′ = x∗] ≥ Pr[x∗ ∈ GOOD] ≥ ε(n)/2 ,

where we have used Claim 3.2. In particular, if A has non-negligible advantage, then so does A′.
So, in this very very special case, the theorem is true.
Since this special case was so very special, and since the reduction in this case was so easy,

it’s worth playing with it a bit to get some idea for how we might modify it. Perhaps the most
ridiculous aspect of this reduction is that we assumed that A is well-behaved on specific choices of
w. E.g., the above reduction would fail even if A gave correct output for every choice of w except
e1. This is silly.

So, here’s a slightly more clever version of this reduction that works even if A fails on some
negligible fraction of w. Instead of calling A on input (y∗, ei), we can call it on input (y∗, w) and
(y∗, w⊕ ei), receiving as output bits bi,0 and bi,1 If A gives us the correct output, bi,0 = 〈x∗, w〉 and
bi,1 = 〈x∗, w ⊕ ei〉, then notice that the ith bit x∗i of x∗ is exactly bi,0 ⊕ bi,1. (Here, we are using
the linearity of the inner product: 〈x,w〉 ⊕ 〈x,w′〉 = 〈x,w ⊕ w′〉).

Below, we will use this idea quite a bit.

3.2 Second special case: 76% success

Now, suppose that for x ∈ GOOD,

Pr
w∈{0,1}n

[b← A(1n, f(x), w), b = 〈w, x〉] = 3/4 + δ(n) , (1)

where δ(n) > 0 is non-negligible. (This is still quite a strong assumption, but not as ridiculous as
the 100% success assumption that we made earlier.)

Claim 3.3. If Eq. (1) holds and x∗ ∈ GOOD, then for all i ∈ [n],

Pr
w∼{0,1}n

[b1 ← A(1n, f(x∗), w), b2 ← A(1n, f(x∗), w ⊕ ei), b1 ⊕ b2 = x∗i] ≥ 1/2 + 2δ(n) .

Proof. We have

Pr[b1 ⊕ b2 6= x∗i] ≤ Pr[b1 6= 〈w, x∗〉 or b2 6= 〈w ⊕ ei, x∗〉]
≤ Pr[b1 6= 〈w, x∗〉] + Pr[b2 6= 〈w ⊕ ei, x∗〉] .

(This last inequality is the union bound, Claim 2.1. It says that the probability of at least one
event Ej happening is bounded by the sum of the probabilities of the Ej .) Finally, by Eq. (1), the
above probability is 1/2− 2δ(n), as needed. (Here, we have used the fact that w ⊕ ei is uniformly
random if w is uniformly random.)

6

So, Claim 3.3 gives us a way to compute a bit (namely, the bit b1⊕ b2) that equals the ith bit of
our input x∗i with probability 1/2 + 2δ(n). But, if we just use this bit as our guess for x∗i for each
i, then it is very unlikely that we will guess all bits of x∗i correctly. We need some way to amplify
our probability of success, so that we can find a procedure that guesses the ith bit correctly with
probability close to one.

Of course, the obvious thing to do is to run the procedure suggested by Claim 3.3 many times,
giving us many guesses x′i,1, . . . , x

′
i,m ∈ {0, 1} for x∗i and then to take the majority of the x′i,j as

our true guess x′i for x∗i . Intuitively, if we use sufficiently many guesses x′i,j , this procedure should
succeed with high probability.

The Chernoff bound, Theorem 2.2, makes this precise. In particular, let zj ∈ {0, 1} be the
random variable that equals 1 if x′i,j = x∗i and 0 otherwise. By Claim 3.3, we see that Pr[zj = 1] ≥
1/2 + 2δ(n). Therefore, if we take the number m of guesses x′i,j to be m := d100n/δ(n)2e, then by
Chernoff bound (assuming that we sample the random choice w independently each time that we
do this), we see that

Pr
[1

m
·
∑

zj ≥ 1/2
]
≤ 2e−(2δ(n))

2m/10 ≤ e−n .

Therefore, by repeating the procedure from Claim 3.3 m times, we can guess x∗i correctly with
probability 1− e−n.

So, the following reduction will succeed in this special case. The adversary A′ will sample
wi,j ∈ {0, 1}n uniformly at random for i = 1, . . . , n and j = 1, . . . ,m = d100n/δ(n)2e. For each i, j,
it calls the adversary A on input (1n, y∗, wi,j) and then again on input (1n, y∗, wi,j ⊕ ei), receiving
as output bi,j,0 and bi,j,1. It sets x′i,j := bi,j,0 ⊕ bi,j,1, and for each i, it sets x′i to be the majority of
the x′i,j . Finally, it outputs x′ := (x′1, . . . , x

′
n).

Since δ(n) is non-negligible and A runs in polynomial time, A′ also runs in polynomial time.
Furthermore, by the argument above, if x∗ ∈ GOOD, then x′i = x∗i with probability at least 1−e−n,
so that in this case Pr[x′ = x∗] ≥ 1 − ne−n.2 Finally, since x∗ ∈ GOOD with probability at
least ε(n)/2 (Claim 3.2), we see that the advantage of A′ is at least ε(n)(1 − ne−n)/2, which is
non-negligible if ε(n) is non-negligible, as needed.

3.3 The actual proof (informally)

In this section, we describe the actual proof, but we are more interested in explaining where it
comes from then in writing a formal proof. In the next section, I actually wrote the formal proof
as a nice succinct, formal proof—without all the commentary.

The reason that we needed a success probability of greater than 75% above is because, in order
to get a decent guess for a single bit x∗i = 〈ei, x∗〉, we needed to combine guesses for two bits
〈w, x∗〉 and 〈w ⊕ ei, x∗〉. An adversary that has success probability only slightly larger than 1/2
could choose to make her guess wrong for one of 〈w, x∗〉 or 〈w ⊕ ei, x∗〉 for almost all choices of w.
(E.g., the adversary could be always be correct when the ith bit is 0, but be wrong with probability
1− 1/n when the ith bit is 1. This adversary still has non-negligible advantage, but our guess for
the bit 〈ei, x∗〉 would be wrong with probability 1− 1/n in this case!)

The Goldreich-Levin reduction starts with the following (ridiculous!) idea. Suppose that for
each pair (w,w⊕ ei), we simply guess the bit 〈w, x∗〉 ourselves, and we only use the adversary A to

2This is one of the (many) time in which we have applied union bound without explicitly mentioning it. In
particular, we skipped a step here in which we write Pr[x′ 6= x∗] = Pr[x′1 6= x∗1 or x′2 6= x∗2 or . . . or x′n 6= x∗n] ≤∑

i Pr[x′i 6= x∗i] ≤ ne−n.

7

compute 〈w ⊕ ei, x∗〉. If we could somehow manage to always guess the bit 〈w, x∗〉 correctly, then
the adversary would guess 〈w ⊕ ei, x∗〉 correctly with probability 1/2 + ε(n)/2 (for x∗ ∈ GOOD).
This would be enough to make the above argument go through.

Of course, we obviously cannot hope to guess 〈w, x∗〉 ourselves with probability better than
random—this is exactly the task that we needed A for in the first place! What we can, of course,
trivially do is guess each of these bits with success probability 1/2. But, in the above procedure,
for each i we needed to choose a total of m different values of w ∈ {0, 1}n. And, if we just guess
〈w, x∗〉 randomly, then the probability that we will get them all right is just 2−m.

Here is the really clever idea: suppose that we happen to correctly guess 〈s1, x∗〉 and 〈s2, x∗〉
for s1, s2 ∈ {0, 1}n. Notice that in this case we also know 〈s1 ⊕ s2, x∗〉 = 〈s1, x∗〉 ⊕ 〈s2, x∗〉. More
generally, suppose that we happen to correctly guess 〈s1, x∗〉, . . . , 〈s`, x∗〉. Then, for all subsets
S ⊆ {1, . . . , `}, we also know 〈wS , x∗〉 =

⊕
j∈S〈sj , x∗〉, where wS :=

⊕
j∈S sj . There are 2` such

subsets, so we learn 2` inner products 〈rS , x∗〉.
This means that, in order to learn m different bits of the form 〈wS , x∗〉, we only need to correctly

guess ` ≈ logm bits of the form 〈sj , x∗〉.
So, here is the actual reduction. A′ will first choose random strings si ∈ {0, 1}n and random

“guess” bits cj for j = 1, . . . , `. Our hope is that cj = 〈sj , x∗〉. Then, for every (non-empty) subset
S ⊆ [`], we define bS :=

⊕
j∈S cj and wS :=

⊕
j∈S sj . Then, for every i = 1, . . . , n and every subset

S ⊆ [`], A′ runs the adversary A on input (1n, y∗, wS ⊕ ei), receiving as output b′i,S . A′ sets x′i to
be the majority over all S of the b′i,S ⊕ bS , and outputs x′ := (x′1, . . . , x

′
n).

We now wish to prove that the above algorithm succeeds with non-negligible probability, as-
suming that ε(n) is non-negligible, for some appropriate choice of m = poly(n, 1/ε(n)). As before,
we first notice that we may assume that x∗ ∈ GOOD. Next, we notice that with probability
2−` ≈ 1/m, we have cj = 〈sj , x∗〉 for all j = 1, . . . , `. This is non-negligible probability, so we may
assume that each of the cj ’s is “correct,” i.e., cj = 〈sj , x∗〉 for all j. Of course, this also implies
that bS = 〈wS , x∗〉 for all S ⊆ [n]!

Now, let zi,S ∈ {0, 1} be the random variable that is one if b′i,S = 〈rS , x∗〉 and zero otherwise.
Notice that rS ∈ {0, 1} is in fact a uniformly random bit string (for non-empty S) and x∗ ∈ GOOD,
so we have PrrS [zi,S] ≥ 1/2 + ε(n)/2. Therefore, if we could apply the Chernoff bound, we would
immediately see that xi = x′i with high probability.

However, we cannot apply the Chernoff bound because we did not choose r{1}, r{2}, . . . , r{1,...,m}
independently. E.g., we have the relationship that r{1,2} = r{1} ⊕ r{2}, so clearly these are not
independent random variables. They are, however, pairwise independent.

Claim 3.4. For fixed i, the bits zi,S ∈ {0, 1} are pairwise independent. Therefore,

Pr[x′i 6= x∗i | x∗ ∈ GOOD and ∀j, cj = 〈sj , x∗〉] ≤ 1/(4ε(n)2m) .

In particular, taking m ≥ n/ε(n)2, this probability is at most 1/(4n), so that with probability at
least 1− n/(4n) = 3/4, all bits will be correct simultaneously.

Proof. It suffices to show that the bit strings rS are pairwise independent. In other words, let
S 6= S′ be distinct sets. Let T := S ⊕ S′ be the set of elements that are in one of the sets S, S′

but not both. Clearly, rS = rS′ ⊕ rT . Since T is non-empty (because S 6= S′), rT is a uniformly
random bit string, and it follows immediately that rS and rS′ are independent, as needed.

The displayed equation then follows from Chebyshev’s inequality (Theorem 2.3). The “in par-
ticular” follows from union bound.

8

The above then shows that if ε(n) ≥ 1/poly(n) (for infinitely many n), then m ≤ poly(n) (for
infinitely many n), so that the above reduction runs in polynomial time

3.4 The formal proof

For completeness, here we give a formal, succinct proof of the theorem. (This is slightly more
succinct than it should be because I refer back to Claims 3.2 and 3.4. But, those claims are
themselves quite short.)

Proof of the Goldreich-Levin Theorem. Suppose that there exists a PPT adversary A with

Pr
x,w∈{0,1}n

[b← A(f(x), w), b = 〈w, x〉] ≥ 1/2 + 1/nC (2)

for some constant C > 0 for infinitely many values of n. Then, we construct an adversary A′
that inverts f with non-negligible probability as follows. A′ takes as input 1n and y∗ := f(x∗)
for uniformly random x∗ ∈ {0, 1}n. Let m := dnC+1e and ` := dlogme. For j = 1, . . . , `, A′
samples sj ∼ {0, 1}n and cj ∼ {0, 1} uniformly at random. For each non-empty subset S ⊆ [`], let
bS :=

⊕
j∈S cj and wS :=

⊕
j∈S sj .

A′ then calls the adversary A on input (y∗, wS ⊕ ei) for all non-empty subsets S ⊆ [`] and all i,
receiving as output b′i,S ∈ {0, 1}. It then sets x′i to be the majority over all non-empty S of b′i,S⊕bS .
Finally, it outputs x′ := (x′1, . . . , x

′
n).

Clearly, A′ runs in polynomial time if A does. Let n be such that Eq. (2) holds. Then, it suffices
to prove that Pr[x′ = x∗] ≥ 1/(16n2C+1). Indeed, let

GOOD := {x ∈ {0, 1}n : Pr
w∼{0,1}n

[b← A(f(x), w), b = 〈w, x〉] ≥ 1/2 + 1/(2nC)} .

By Claim 3.2, we have
Pr[x∗ ∈ GOOD] ≥ 1/(2nC) .

So,

Pr[x′ = x∗] ≥ Pr[x∗ ∈ GOOD and x′ = x∗]

≥ 1

2nC
· Pr[x′ = x∗ | x∗ ∈ GOOD] .

Furthermore,

Pr[x′ = x∗ | x∗ ∈ GOOD] ≥ Pr[x′ = x∗ and ∀j, cj = 〈sj , x∗〉 | x∗ ∈ GOOD]

= 2−j Pr[x′ = x∗ | x∗ ∈ GOOD and ∀j, cj = 〈sj , x∗〉]

≥ 1

4nC+1
· Pr[x′ = x∗ | x∗ ∈ GOOD and ∀j, cj = 〈sj , x∗〉] .

So, it suffices to show that, conditioned on x∗ ∈ GOOD and cj = 〈sj , x∗〉 for all j, Pr[x = x] ≥ 1/2.
But, notice that this is exactly Claim 3.4.

References

[GL89] Oded Goldreich and Leonid A. Levin. A Hard-Core Predicate for all One-Way Functions.
In STOC, 1989. 1

9

	Recap of hardcore predicates
	Basic probability tools
	Union bound
	Chernoff bound
	Chebyshev's inequality

	The Goldreich-Levin Theorem
	First special case: 100% success
	Second special case: 76% success
	The actual proof (informally)
	The formal proof

