
Levin’s Universal OWF!

Noah Stephens-Davidowitz

May 29, 2023

1 Universality and combiners

We’ve now seen a few examples of candidate OWFs—i.e., functions f that are one way if some
problem or another is hard. Specifically, we saw multiple one-way functions that are secure if
factoring is hard, a one-way function that is secure if the discrete logarithm over Z∗q is hard, and a
one-way function that is secure if Ajtai’s SIS problem is hard. (In all of these cases, we had to be
very careful by what we meant by our hardness assumption.) There are many many more examples
that we could go through. In particular, I think it’s pretty hard to imagine that we live in a world
in which OWFs simply don’t exist. (Of course, we do not know to prove that one-way functions
exist, since we do not even know how to prove that P 6= NP. But, we think they probably do.)

So, I’m pretty comfortable assuming that there exists some one-way function. But, it’s much
easier for me to question whether some particular function f actually is one way—even functions
f that are commonly assumed to be one-way functions. E.g., maybe factoring is not hard (or
maybe factoring is hard, but not on the input distribution that we chose). Or, maybe the discrete
logarithm is not hard (or maybe it is sometimes hard, but not over the group Z∗q that we used).
This is concerning because if we want to actually use one-way functions for things (e.g., to build a
hard puzzle or to build secret-key encryption), we presumably need to pick one. And, what if we
choose wrong?

One can defend against this a little bit by using a combiner. Combiners come up in differ-
ent contexts in cryptography and can be applied to different primitives.1 E.g., a combiner for
secret-key encryption is a procedure for converting two or more secret-key encryption schemes
(Gen1,Enc1,Dec1), . . . , (Gen`,Enc`,Dec`) into a single encryption scheme (Gen∗.Enc∗,Dec∗) with
the property that (Gen∗.Enc∗,Dec∗) is secure if at least one of the schemes (Geni,Enci,Deci) is
secure. (Maybe you can see how to do this? There’s a rather ugly way called onion encryption,
but there’s also a much more elegant way that’s related to the one-time pad.)

Similarly, a combiner for one-way functions is just a way of combining many one-way functions
f1, . . . , f` into a single function f∗ so that f∗ is one way if at least one of the fi is one way. In
other words, if we have some long list of candidate one-way functions f1, . . . , f` (and we do!), then
we can combine them all together into a single one-way function that will be secure as long as at
least one of our candidates is actually one way.

In fact, combining one-way functions is quite easy. Just define f∗(x1, . . . , x`) := (f1(x1), . . . , f`(x`))
(where |xi| = |xj | = n/` and we assume for simplicity that the input length is divisible by `—

1By the way, I use this word “primitive” a lot. I’m not sure if there’s a truly formal definition of a “cryptographic
primitive,” but it basically just means a “cryptographic thing” that has a formal definition. So, secret-key encryption
is a cryptographic primitive. One-way functions are a cryptographic primitive. Etc.

1

remember that we justified this assumption when we studied efficiently sampleable one-way func-
tions in the previous lecture). In other words, we divide our input up into ` equal pieces and run
each function on one piece. The fact that this is one way if at least one of the fi is one way is
relatively straightforward. (Much more straightforward than, e.g., our proof that weak one-way
functions imply strong one-way functions.) In particular, if we had an adversary that inverted f∗

on uniformly random input of length n, then we could use this to invert fi on uniformly random
input of length n/` with essentially the same running time and the same probability. (A formal
proof would work via a reduction, where the reduction A′ samples uniformly random xj ∼ {0, 1}n/`
for j 6= i, and uses these to produce input for a hypothetical adversary A that breaks f∗, etc. I
show such a formal proof in the supplementary notes showing examples of proofs by reduction. We
will also see a version of this reduction below as part of the proof of our main theorem. There are
also many other details that I hand-waved above. For example, what happens if some of the fi are
not efficiently computable?)

But, in order for this to be useful, we still need to find a list of functions f1, . . . , f` with the
guarantee that at least one of them is actually one way. One can imagine a world in which one-way
functions exist, but no function in our list f1, . . . , f` (e.g., no function discussed in this course) is
one way.

Of course, for most of this course, we will be perfectly happy assuming things like “factoring
is hard,” and even making far more audacious claims. But, the purpose of this lecture is to show
how to build a universal one-way function. That is, a function fU with the property that if any
function at all is one way, then fU is one way !! Over the next few lectures, we will show how
to use any one-way function f to build many other cryptographic primitives (and how to build
one-way functions from these primitives), so that all of these primitives will also have universal
constructions. (Our universal construction will be quite artificial. Levin later showed a universal
one-way function that is much more natural [Lev03], but the proof that it is universal is more
difficult.)

2 Levin’s universal one-way function

The idea behind Levin’s universal one-way function fU [Lev87] is essentially to use the above
“combining” idea with “the list of all possible (efficiently computable) functions.” As you might
guess, making this precise is a bit delicate.

Here’s a first try. You first fix an ordering T1, T2, T3, . . . , of all possible computer programs—
written as Turing machines or Python programs, or C programs, or in whatever model of com-
putation you like. E.g., you might first iterate through all possible one-character ASCII strings
in order, interpreting them as a program written in your favorite programming language, then all
two-character strings, and so on. You can view strings that do not compile as corresponding to
the computer program that always outputs 0 on any input. (See how artificial this construction
is?!) We will assume for simplicity that the Ti are deterministic, and in fact we will only show
that fU is a one-way function if there exists a one-way function that is computable in deterministic
polynomial time. (This issue is easily fixed.)

We can then set, e.g., f∗(x1, . . . , x√n) = (T1(x1), T2(x2), . . . , T√n(x√n)), which is in fact a
function because the Ti are deterministic, where |xi| =

√
n and we have assumed without loss of

generality that the input length n is a perfect square so that
√
n is an integer.2 Then, at least

2We can do this without loss of generality by recalling that efficiently sampleable one-way functions are equivalent

2

intuitively, f∗ should be hard to invert if and only if at least one of the Ti is hard to invert. (There
is nothing particularly special about the choice of

√
n here. We could use T1, . . . , T` with inputs

of length n/` for, e.g., ` = n1/3, or ` = n99/100, or whatever. The important thing to notice is
that n and n/` are polynomially related so that a running time is polynomial in n/` if and only
if it is polynomial in n, and similarly a success probability ε is negligible in n/` if and only if it
is negligible in n.) In particular, if there is some machine Ti∗ that computes some hard-to-invert
function f , then eventually

√
n ≥ i∗, and Ti∗ will therefore be included in T1, . . . , T√n. And, we

should expect that f∗ is hard to invert. (Here, we are of course relying heavily on asymptotics. In
particular, our definition of “hard to invert” is an asymptotic definition, and therefore only makes
sense as n → ∞. We therefore do not care about the behavior of the function f∗ for inputs of
length n < i∗, since i∗ is some fixed constant.)

The only issue with the above construction is that it won’t produce an efficiently computable
function f∗. (In fact, in the uniform model of computation, it also might not be secure.) Some of
the Ti will not run in polynomial time. In fact, some of the Ti will never halt at all! (Actually, it’s
not even clear what I mean when I write Ti(x) if Ti does not halt on input x! Most ways of making
this precise would yield an f∗ that is not computable at all, let alone efficiently computable!)

The solution to this issue is to define the function

T
t(n)
i (x) :=

{
Ti(x) Ti halts in time at most t(|x|) on input x

0 otherwise

In other words T
t(n)
i outputs whatever Ti outputs, unless it takes too long, in which case it outputs

0. Notice that by definition T
t(n)
i is computable in roughly t(n) time (maybe a little more, like

O(t(n) log t(n)) to account for the overhead of keeping track of the running time). In particular, if

t(n) is a polynomial, then T
t(n)
i is computable in polynomial time. Notice also that the value taken

by T
t(n)
i is very sensitive to our particular model of computation and our particular definition of

running time. However, our proof that this construction works will not care about the model (as
long as certain simple functions are computable in a reasonable amount of time in this model).

We will just take t(n) = n10 from now on for convenience, and we will define our actual universal
one-way function to be

fU (x1, . . . , x√n) := (Tn10

1 (x1), . . . , T
n10√
n (x√n)) .

for |xi| =
√
n. (If one is very careful, then one can replace Tn10

i by Tn2

i , but we do not want to be
very careful.) Then, clearly fU can be computed in time at most, say, O(n11).

Let’s first prove a theorem that is almost as good as what we want. Indeed, this is exactly
the theorem that we want except that it only guarantees that fU is one way if there is a one-way
function that is computable in some fixed polynomial time, O(n9). It does not immediately tell
us anything about what happens if, e.g., there is a one-way function that is computable in time
Θ(n11) or Θ(n100).

Theorem 2.1. fU is a one-way function if there exists any one-way function f that is computable
in time O(n9) on inputs of length n (in whatever model of computation we’re using to define T t

i).

to one-way functions. In particular, we can run f∗ with the sampling algorithm that takes as input 1n and outputs
a uniformly random bit string of length b

√
nc2—i.e., “n rounded down to the nearest perfect square.” Essentially

equivalently, we can always replace f∗ by f∗∗, which takes strings of arbitrary length and simply ignores any input
bits after the first b

√
nc2 bits.

3

Proof. The proof is just a more formal version of the high-level discussion above. We have already
shown that fU is efficiently computable, so we need only prove that it is hard to invert. We may
assume that there is a one-way function f that is computable in time O(n9). Then, there exists
some index i∗ such that Ti∗ is a machine that (1) runs in time O(n9) on inputs of length n; and
(2) computes f , i.e., Ti∗(x) = f(x).

Let n0 be large enough so that n0 ≥ i∗ and so that the running time of Ti∗ on input n ≥ n0 is
less than n10. Therefore, so that Tn10

i∗ (x) = f(x) for all x ∈ {0, 1}n. (Since Ti∗ runs in time O(n9),
there must exist such an n0.)

Then, for x ∈ {0, 1}n with n ≥ n0, we have fU (x1, . . . , x√n) = (. . . , f(xi∗), . . .).
Now, suppose for contradiction that there exists a polynomial-time adversary A such that

ε(n) := Pr
x1,...,x√n∼{0,1}

√
n
[(x′1, . . . , x

′√
n)← A(1n, fU (x1, . . . , x√n)) : fU (x′) = fU (x)]

is non-negligible.
We construct A′, an adversary in the one-way function game against f as follows. A′ takes as

input 1m and y∗ = f(x∗), where x∗ ∼ {0, 1}m. If m < n0, A′ simply gives up (e.g., outputs 0).
Otherwise, for j = 1, . . . ,m with j 6= i∗, A′ samples xj ∼ {0, 1}m uniformly at random and sets

yj := Tn10

j (xj). It also sets yi∗ := y∗. It then calls A on input 1m
2

and (y1, . . . , ym), receiving as
output x′1, . . . , x

′
m. Finally, it outputs x′i∗ .

Clearly A′ is PPT. Notice that

Pr[f(x′i) = y∗] ≥ Pr[f(x′1) = y1, f(x′2) = y2, . . . , f(x′m) = ym] = ε(m2) ,

where the last equality holds because the yj are independent and distributed as f(xj) for xj ∼
{0, 1}m (including the case j = i∗). Therefore,

ε′(m) := Pr
x∗∼{0,1}n

[x′ ← A(1m, x∗) : f(x′) = f(x∗)] ≥ ε(m2) ,

which is non-negligible in m. This contradicts the assumption that f is one way. Therefore, no
such A can exist, i.e., fU is one way.

Finally, it remains to remove the restriction that our one-way function f must run in time
O(n9). To do so, we use a simple trick. In particular, we make our function more efficient by
ignoring most of the input.

Theorem 2.2. If there exists a one-way function, then there exists a one-way function that is
computable in time O(n9) (for any “reasonable” model of computation).

Proof. Let f be a one-way function. By assumption, f is computable in polynomial time (in our
model of computation). So, f is computable in time O(nC) for some fixed C ≥ 1. Let f ′(x) be
defined as follows for x ∈ {0, 1}m. Let n := bm1/Cc, and let x = (x1, . . . , xm) be the individual bits
of x. Then, f ′(x) = f(x1, . . . , xn).

Notice that f ′ is computable in O(m9) time on inputs of length m (in any reasonable model of
computation, e.g., any model of computation in which bm1/Cc can be computed in O(m9) time for
any constant C ≥ 1).

So, we only need to show that f ′ is one way (assuming that f is one way). To that end, we
suppose for contradiction that there exists a PPT adversary A such that

ε(m) := Pr
x∼{0,1}m

[x′ ← A(1m, f ′(x)) : f ′(x′) = f ′(x)]

4

is non-negligible. We then construct an adversary A′ in the one-way function game against f as
follows. A′ takes as input 1n and y∗ := f(x∗) where x∗ ∼ {0, 1}n. It then runs A on input 1n

C
and

y∗, receiving as output x′ ∈ {0, 1}m′ . Finally, A′ outputs the first b(m′)1/Cc bits of x′.

References

[Lev87] Leonid A. Levin. One way functions and pseudorandom generators. Combinatorica,
7(4):357–363, December 1987. 2

[Lev03] L. A. Levin. The tale of one-way functions. Problems of Information Transmission,
39(1):92–103, January 2003. 2

5

	Universality and combiners
	Levin's universal one-way function

