One-way functions from factoring, discrete logarithms, and SIS

Noah Stephens-Davidowitz

May 29, 2023

1 One-way functions recap

Recall from the previous lecture notes the definition of a one-way function. In fact, we had two
definitions, one strong and one weak, though weak one-way functions are only interesting because
we can use them to construct strong one-way functions. (To be clear, in the future when we say
“one-way functions” without qualification, we will always mean strong one-way functions.)

Definition 1.1. A function f : {0,1}* — {0,1}* is called (strongly) one-way if it satisfies the
following.

1. Easy to compute. There is a probabilistic polynomial-time algorithm computing f.

2. Hard to invert. For all probabilistic polynomial-time adversaries A, there exists a negligible
e(n) such that
Pr [AQ1", f(z)) =2 : f(z') = f(=)] <e(n)

x~{0,1}"

for alln > 1.
f s called weakly one-way if it satisfies the following instead of Item 2.

2’. Weakly hard to invert. There exists a polynomial p(n) such that for all probabilistic
polynomial-time adversaries A, there exists ng > 1 such that

P A0 f@) = e f@) = f@)] < 1-1/p()

for all n > ng.

In the previous lecture notes, we saw a candidate for a weak one-way function: multiplication.
We also saw that weak one-way functions imply strong one-way functions. So, we already know how
to build strong one-way functions (assuming that factoring is suitably hard). Here, we introduce
more constructions of one-way functions, as well as some of the mathematical background that will
be useful for the rest of the course.

2 “Efficiently sampleable one-way functions” and a better one-
way function from the hardness of factoring

Remember that, in our attempt to build a one-way function from the hardness of factoring, we
ran into an annoying problem: it is not hard to factor a uniformly random n-bit integer (or, more
accurately, the product of two uniformly random n/2-bit integers). One way to view the problem
is as a sort of type mismatch between our definition of a one-way function, which asks for hardness
to invert on wuniformly random input, and the hardness of factoring, which applies to a different
distribution—e.g., it is likely hard to find a factor of the product of two random n-bit primes, but
not to find a factor of a random integer.

More generally, imagine that we have some function f and some distribution D such that it is
hard to invert f(z) when z is sampled from D. (Really, we should consider a family of distributions
D,,, one for each security parameter. But, we often ignore such formalities.) Shouldn’t this be just
as useful as a one-way function?

The answer in general is no! In particular, if there is no algorithm that efficiently samples from
D (or, more accurately, a PPT algorithm that samples from D,, on input 1"), then how could a
PPT algorithm make use of this function? However, if D is efficiently sampleable, then we're in
business.

For example, we think that it is hard to find a non-trivial factor of pg, where p and ¢ are
uniformly random n-bit primes. So, perhaps instead of running our one-way function fou(p,q) =
pq on random n-bit integers, why not simply run it on uniformly random n-bit primes? This doesn’t
quite fit our definition of a one-way function, so let’s change the definition!

In particular, we define what we will call “an efficiently sampleable one-way function.” We will
then show that one-way functions exist if and only if efficiently sampleable one-way functions exist.
This will allow us to move between different definitions. E.g., sometimes, we will show that one-way
functions exist under a certain assumption by constructing something that satisfies the definition
below.

Definition 2.1. An efficiently sampleable one-way function consists of a domain D, range R,
function f: D — R, and a PPT algorithm Samp with the following properties.

1. Correct. Samp takes as input 1™ and always outputs an element in the domain D.
2. Easy to compute. There is a PPT algorithm B such that for any x € D, B(z) = f(z).

3. Hard to invert. For any PPT adversary A there exists negligible € such that

Pr (o« A", f(z)) : f(2') = f(z)] < &(n)

xSamp(17)
for alln > 1.

In other words, an efficiently sampleable one-way function is just like a one-way function except
that (1) its domain and range are not necessarily {0, 1}*; and (2) it is hard to invert when its input
distribution is Samp(1™), which is not necessarily uniformly random over {0, 1}".

We will now show that one-way functions exist if and only if efficiently sampleable one-way
functions exist. Notice that one direction is easy: if a one-way function f exists, then we can build
an efficiently sampleable one-way function by just taking D = R = {0, 1}* and having the sampling

algorithm Samp(1™) output a uniformly random n-bit string. The more difficult thing to prove
is that any efficiently sampleable one-way function implies the existence of a standard one-way
function.

To prove this, we use a simple and common trick. Recall that a PPT algorithm like Samp flips
m < n% coins during its computation (when the input consists of n bits), where C' > 0 is some
constant. For r € {0,1}™, we write Samp(1™;r) for the output of the Samp algorithm when its
input is 1™ and its coins are fixed to be r. Then, g(r) := Samp(l“”l/cJ;r) is a function (i.e., each

input corresponds to exactly one output). Furthermore, if » ~ {0,1}™, then g(r) is distributed

r1/C
exactly as Samp(lLI | J). We therefore use this to move between uniformly random bit strings,

and arbitrary efficiently sampleable distributions.
Here is the formal theorem.

Theorem 2.2. One-way functions exist if and only if efficiently sampleable one-way functions
extst.

Proof. As we observed above, one direction is easy. In particular, suppose that f is a one-way
function. Then, consider the candidate efficiently sampleable one-way function with the same
function f, D = R = {0,1}*, and Samp(1"™) ~ {0, 1}". In other words, we take the Samp algorithm
to simply be the algorithm that flips n coins and outputs the result. A quick check of the definitions
shows that this is in fact an efficiently sampleable one-way function.

Now, suppose that D, R, Samp, and f form an efficiently sampleable one-way function. Let
C > 0 be such that Samp(1") uses at most n¢ random coins. Consider the function f’ defined by
f(r):= f(Samp(lU"‘l/cJ;r)). In other words, f’(r) is what you get from applying f to the output
of Samp when Samp is run with random coins fixed to r.

It is immediate that f’ is efficiently computable. (Specifically, computing f’ consists of com-
puting ||]"/¢|, running Samp, and then computing f. All of these operations can be done in
polynomial time by the assumption that f is efficiently computable and Samp is PPT. We may
also assume without loss of generality that the output of f’ lies in {0, 1}*, since anyway it has to
be something that a computer program can write down.)

To prove that f’ is hard to invert, we suppose for contradiction that there exists some PPT
adversary A such that

e(m):=Pr [r"« AQ™, f'(r)) : f'(r') = f'(r)]
r~{0,1}™
is non-negligible. Then, we construct an adversary A’ in the efficiently sampleable one-way function
game against f as follows. Let n := |m!'/¢|. A’ takes as input 1" and y* := f(z*), where
x* := Samp(1"; 7*) with r* ~ {0,1}™. A’ then runs A on input 1™ and y*,! receiving as output 7.
A’ then outputs 2’ := Samp(17;1/).

T am cheating here a tiny bit in that I am implicitly assuming that A’ “knows” m. But, notice that A’ only
takes 1™ (and y*) as input, and that m is not uniquely determined by n (because of the floor function). Of course,
A’ could fix m := n%, but it could be the case that A has non-negligible advantage for general m but, e.g., never
succeeds when m is a Cth power, in which case A" would never succeed even though A has non-negligible advantage
in general. (Adversaries can be very annoying. In fact, they are adversarial!) One solution to this is to have A’
guess m uniformly at random from e.g., the integers m between n¢ and (n+ 1)C (which are all integers m such that
_ml/cj = n). Then, with probability at least, say, 1/(n 4 1)¢, we will guess correctly, and since this probability is
non-negligible, our resulting advantage is also non-negligible. We can also simply run .4 many times, once for each
m in this interval, check if any of the outputs are valid inverses, and if so, output the valid inverse. But, anyway, we
ignore these issues here because they are super annoying and our patience is limited.

Notice that A’ is in fact PPT.
More interestingly, notice that if f/(r') = f'(r*), then f(x*) = f(2'). It follows that

e'(n) = Pr[f(z') = y] 2 Pe[f' (') = f'(r")] = e(m) = £(n) |

which is non-negligible. This contradicts the assumption that f is an efficiently sampleable one-way
function. So, f’ must be one way. O

(Notice a clever trick that we use in this proof. We observe that, in order to find a preimage 2/
of f, it suffices to find coins 7’ such that 2’ = Samp(1™;77).)

This theorem is quite useful, and we will often invoke it implicitly. For example, we will often
consider one-way functions whose range is restricted to n-bit strings where, e.g., n is even or n is
a perfect square or something like this. This is justified by noting that these fit the definition of
efficiently sampleable one-way functions (with the sampling algorithm sampling a uniformly random
bit string of even or square length or whatever), and therefore their existence is equivalent to the
existence of one-way functions whose domains are arbitrary bit strings.

2.1 Finishing our factoring example

For completeness, we now show how to construct an efficiently sampleable one-way function from
the hardness of factoring. Specifically, we use the following assumption.

Assumption 2.3 (One version of hardness of factoring). For any PPT A there exists negligible €
such that

P 10 q) < A pa) = P'q = pa, ¥sd > 1] <en),

where P, = {2 <p<2"—1 : pis prime} is the set of n-bit primes.

We now recall two crucial facts. The first crucial fact is that a uniformly random n-bit integer
is prime with probability ©(1/n). (This is known as the Prime Number Theorem.) The second
crucial fact is that there are polynomial-time algorithms that determine whether a given integer
is prime. Taken together, these two facts imply that there is a PPT algorithm Samp such that
Samp(1™) outputs a uniformly random n-bit prime. In particular, this algorithm repeatedly samples
a uniformly random n-bit integer, tests if its prime, and if it isn’t repeats. This runs in polynomial
time because its probability of success in each attempt is ©(1/n), which means that its expected
number of steps is ©(n).?

So, we can build an efficiently sampleable one-way function whose domain is the set of primes
D :=P, range is R := N, sampling function is as described above, and the function itself is simply
fmule (restricted to this domain). Assumption 2.3 is exactly equivalent to the assumption that this
is hard to invert.

2T am being slightly misleading here. In the proof of Theorem 2.2, we assumed that there was some fixed C such
that the number of coins flipped by Samp(1™) was globally bounded by n°. But, the Samp algorithm that I have
described here has some tiny but non-zero probability of sampling any number of coins, since it might get unlikely
and keep failing to find a prime. To make the two definitions fit, we must, e.g., declare that Samp(1™) always outputs
the prime 2 if it fails to find a prime after, say, n? tries. Since this event happens with negligible probability, it
only alters the output distribution of Samp by a negligible amount and therefore does not affect the security of the
resulting one-way function. However, we typically ignore this minor distinction between expected polynomial-time
randomized algorithms and guaranteed polynomial-time randomized algorithms.

3 The discrete logarithm

3.1 Background: commutative groups

We will need to introduce the notion of a group. Actually, we will only need a special kind of group,
which we will call commutative groups. They are often also called “Abelian groups” in honor of
Abel (pronounced uh-beel’-yun and ah’-bull respectively).

Definition 3.1. A commutative group (G, -) is a set G with a binary operation - over G, written
g - h, with the following properties.

1. Closure. For all g,h € G, g-h eG.

2. Identity. There exists an element e € G (called the identity element) such thate-g = g-e = g
forall g € G.

3. Inverses. For every g € G, there exists a g~ € G such that g- g~ ' = e.

4. Associativity. For every g1,92,93 € G, (91-92) - 93 = g1 (92 93)-
5. Commutativity. For every g,h € G, g-h="h-g.

We are only interested in groups with finitely many elements, and we refer to the number of elements
|G| as the order of the group.

Our simplest example is (Zq,+), the additive group modulo an integer ¢ > 2. Le., the set is
simply Z, := {0,1,...,¢— 1}, and the group operation is addition modulo ¢, g + h mod ¢. Clearly,
this is a commutative group. In particular, 0 is the identity element, and every g € Z, has as its
inverse ¢ — g € Zg. Its order is q.

The other example that interests us is the multiplicative group modulo g, (ZZ, -). The set
is Zy == {9 € Zq : gecd(g,q) = 1}, and the group operation is multiplication modulo ¢, i.e.,
g -hmod g. It is a bit less clear that Z; is a group. The identity is of course 1, and it is easy
to check that it is closed, associative, and commutative. But, it’s less obvious that elements in
this group have inverses. Notice that an element h is an inverse of ¢ modulo ¢ if and only if there
exists some integer k such that gh + kg = 1. We recall that the extended Euclidean algorithm
finds integers h, k satisfying this identity (sometimes called Bézout’s identity). So, h = ¢! mod q
certainly exists, and we can even find it efficiently, given g and ¢. Notice that this holds if and only
if ged(g,q) = 1, i.e., if and only if g € Zj.

The order of Z; is often written as ¢(q) := |Z;|, and this function ¢ is called Euler’s ¢ function
or Euler’s totient function. ILe., ¢(q) is the number of natural numbers less than ¢ that are coprime
to ¢. For prime ¢, ¢(¢q) = ¢ — 1. More generally, if ¢ = p{* - - - p,* for distinct primes p1, ..., py with

a; > 1, then ¢(q) = p{* '(p1 — 1) - 5> (p2 — 1)+ - pp*(pe — 1).

3.2 Background: exponentiation in a group

We write g* := g - g---g for the product of g € G with itself k& > 1 times—or, if the operation
is addition, we write kg := g+ g + --- + ¢g. We also define g7* := (¢71)* and ¢° := e. With
these conventions, this operation satisfies the basic properties of exponentiation: (gk)g = ¢~
g =(g")7" g g" =gt and (hg)* = hFgh.

Now, G is finite. Therefore, the sequence ¢', g% ¢>,..., must eventually repeat itself. ILe.,
g* = g* for some k > ¢. Multiplying by ¢~* on both sides, we see that ¢g*~¢ = e. So, for every
element ¢ in the group, there exists some k > 1 such that ¢g* = e. The minimal such k is called the
order of g. (This overuse of the word order is a bit annoying.) A key fact (known as Lagrange’s
theorem and proven in Appendix A) is that the order k of the element must divide the order |G|
of the group.

A group is cyclic if all its elements can be written as a power of one fixed element g € G, i.e.,
G ={e,g,6%...,9/¢71}. Equivalently, a group is cyclic if it has an element with order |G|. We
call such a g a generator.

For example, the additive group Zj is cyclic, with 1 as a generator. More generally, any element
coprime to ¢ is a generator. So, there are actually ¢(g) generators of Z,.

The multiplicative group Z; is not always cyclic, but it is cyclic when ¢ is prime. (See Ap-
pendix B for a proof.) ILe., there is some element g whose order equals the order ¢ — 1 of the entire
group. In fact, since one such element exists, there must be many. To see this, we recall that if
g is a generator of Z, then every element in the group can be written as g* for some k. Notice
that ¢* = 1 if and only if k¢ is a multiple of ¢ — 1. It follows that the order of ¢g* is exactly
(g — 1)/ ged(k,q — 1). In particular, g* is a generator whenever k and ¢ — 1 are coprime. So, the
number of generators is ¢(q — 1). (More generally, the number of generators of a cyclic group G is

always ¢(|G]).)

3.3 Groups as computational objects, and the repeated squaring algorithm

Since we are cryptographers interested in asymptotic complexity, we need a security parameter n,
and our group operation should be efficiently computable in the security parameter. This notion
does not really make sense for a fixed group G, so, we will actually need a sequence G1, G2, Gs, ...,
of groups, say with |G,| ~ 2™. Let’s assume that group elements are represented by n-bit strings
and that group operations are computable in poly(n) time, given a description of the group G, as
advice. We will quickly get tired of dragging the parameter n around, and we will drop it. (This
is very common even in formal papers about cryptography. We are often formally interested in
sequences of objects Ay, As, As, ... ,, one for each possible security parameter. But, we often lazily
pretend that the security parameter is fixed and that we are interested in only a single object A.)
But, we will keep it for now to make clear that it is formally necessary.

For example, Gy, could be Z,, or Z; for some n-bit number g,. Addition modulo ¢, takes
O(log g,) = O(n) time, and multiplication modulo g, can be done in O(log? ¢,) = O(n?) time (or
even in O(nlogn) time [HvdH21]). So, both of these groups have efficiently computable group
operations. For these two groups, the inverse g~ € G,, is efficiently computable as well.

But, what about computing ¢* € G,? The naive algorithm just computes g, g%, ¢°, ..., ",
which requires us to compute k group operations. This is not a polynomial in the bit length ~ log k
of k. But there is a better algorithm for this—called the repeated squaring algorithm—that allows
us to use only O(logk) group operations! We can compute gl,gQ,g‘%, . ,gzz__l,g?[€ Gy, where
¢ := |logy k|, using a total of ¢ group operations by noticing that 921+1 = ¢* - ¢g*. Since we can
write k£ as a sum of O(logk) numbers of the form 1,2,4,..., 2¢ (by writing k in binary), we can
write g* as O(log k) products of the g2 € G,,. This allows us to compute g* in just O(logk) total
group operations, as claimed.

3.4 The discrete logarithm

We are now ready to present our one-way function! Assume we have a sequence G1,Ga,Gs, .. .,
of groups together with generators g1, g2, g3, . . . ,. Our one-way function f is simply f(k) := gﬁ €
G, where k € {0,1}" is an n-bit string interpreted as an integer. Notice that this is efficiently
computable if the group operation in G,, is efficiently computable, since as we argued above, gF is
computable using O(log k) = O(n) group operations.

The problem of inverting this function f is called the discrete logarithm problem. IL.e., given a
generator g, € G, and another element h € G, the discrete logarithm problem is to find k such
that g¥ = h. We write log,, (k) for the unique 0 < k < |G| — 1 such that gk = h. (Notice the
similarity with the “continuous logarithm.” E.g., logy 128 is the number = such that 2% = 128.)

So, when is this hard? For the additive group Zg,, the discrete logarithm problem is easy, i.e.,
solvable in time poly(log g,) = poly(n). Indeed, the discrete logarithm over Z,, is the following. We
are given g, h € Zq, with g coprime to g,, and we are asked to find %k such that kg = h mod ¢,. To
do so, it suffices to compute the inverse of g mod ¢, i.e., the element r € G such that gr = 1 mod g,,.
We observed earlier that the Euclidean algorithm lets us compute this efficiently. Then, we can
find k by computing k = hg~! mod g,,.

For the multiplicative group Zg , things are more interesting. As far as we know, the discrete
logarithm is in fact hard over Z; . Specifically, the best known algorithm for the discrete logarithm

over Zy, runs in time 90(log!/? gp(loglog 4n)*/?) — 9O(n'/?log?/* ") which is superpolynomial in n. So,
we can fix some sequence g, of n-bit primes and generators g, of Z; , and we believe that the
function f(k) := g¥ mod ¢ is in fact one way. (There are groups of size roughly 2" over which the
fastest known algorithm for the discrete logarithm runs in time 2/2. Because of this, these groups,

which are based on elliptic curves, are used in practice—and sometimes in theory as well.)

3.5 Where do G,, and g, come from?

If we are comfortable with non-uniform algorithms, then we do not formally need to worry so
much about where G, and g, come from. Technically, we can just provide them as advice to the
algorithm that computes our one-way function f. In other words, we can hard code G,, and g, into
our algorithm.

But, it’s a bit unsatisfying to say that G, and g, just fall from the sky, and if we want to work
with uniform algorithms, it’s unacceptable. For this one-way function to be useful, there obviously
has to be some way to find G,, and g, efficiently. So, we now show how to efficiently find an n-bit
prime g together with a generator g of Zg.

So, first of all, how do we find n-bit primes ¢7 Even this is not entirely trivial. There is no
deterministic poly(n)-time algorithm known (though very simple algorithms work under certain
very strong number-theoretic conjectures). But, with randomness, it is relatively straightforward.
We pick a random n-bit number, use our favorite efficient primality testing algorithm to test if it is
prime, and repeat this until we find one. The Prime Number Theorem tells us that our guess will
be prime with probability roughly 1/n, so that we are likely to find a prime after n or so tries. (We
mentioned this above when we built and efficiently sampleable one-way function from factoring.)

Finding generators is harder. We mentioned earlier that Z; has a lot of generators, ¢(q — 1)
of them. (¢(m) is always at least Q(m/loglogm). ILe., for n-bit primes, at least a Q(1/logn)
fraction of the elements are generators.) So, if we had some way to test whether an element g € Z;
is a generator, then we could find one using the same guess-and-check trick that allows us to find

primes. And, since the order of ¢ must divide the order of the group, the possible orders for the
element g correspond to the factors of |Z; = g — 1. If we knew the non-trivial factors of ¢ — 1, say,
di,...,dy, then we could test whether ¢ is a generator by checking whether ¢% = 1 mod ¢ for all i.
g is a generator if and only if g% # 1 mod ¢ for all i. There are at most log, ¢ factors, so we could
do this efficiently, given the factors.

Unfortunately, factoring ¢ — 1 seems to be hard. (Maybe that’s actually fortunate.) But, we
can use a trick to get around this: instead of sampling a prime ¢ and then trying to factor ¢ — 1,
we can sample a factorization of ¢ — 1 first and then test whether ¢ is prime. There are beautiful
algorithms to do this that achieve uniformly random ¢ [Kal02], but in practice, we do the following.
We sample a uniformly random (n — 1)-bit prime p using the guess-and-check technique described
above. If ¢ = 2p + 1 is prime, then take this to be q. Otherwise, resample p until this is true.

Primes p, ¢ satisfying ¢ = 2p+1 are called Sophie Germain primes (after Marie-Sophie Germain).
More specifically, p is called a Sophie Germain prime, and ¢ is called a safe prime. We believe that
a random n-bit number will be a Sophie Germain prime with probability roughly 1/n? (i.e., the
probability that two random n-bit numbers p and ¢ are prime). But, like many things in number
theory (and many things in cryptography), we do not know how to prove this. (Sophie Germain
primes are used quite a lot in practice, and in practice, this works.)

Notice that we conveniently know the factorization of ¢ — 1 when ¢ is a safe prime. Specifically,
q — 1 =2pis a complete factorization. So, to find a generator of Zj, we sample a random element
g and check if g> = 1 mod q or g = 1 mod ¢. If not, then g is a generator. (Safe primes are quite
useful in number-theoretic cryptography in general because of this nice property.)

4 One-way function families

To make the approach described above work, we need to modify the definition of one-way function
slightly. Instead of one function f, we have a family of functions f; indexed by a key k and an
efficient algorithm Gen that takes as input 1" and outputs k. E.g., Gen can be the algorithm
described above to find an n-bit safe prime ¢ and a generator g of Z;. It outputs ¢ and g. The
formal definition is below.

Definition 4.1. A one-way function family is an efficient algorithm Gen that takes as input 1™
and outputs k € K and a function f: K x {0,1}* — {0,1}* satisfying the following properties.

1. Easy to compute. There is a probabilistic polynomial-time algorithm computing f.

2. Hard to invert. For all probabilistic polynomial-time adversaries A, there exists a negligible
e(n) such that

Pr [AQ"E f(ha) =o' ¢ f(ka) = f(ka)] < en)

x{0,1}7 k«G(17)
for allm > 1.

In fact, the existence of a one-way function family implies the existence of a one-way function.
We will not show this here, but the proof is relatively simple. Given f and Gen, we construct
/! whose input consists of the randomness r used by Gen(1") together with the input « to f. f’
outputs the key k£ = Gen(1";r) together with f(k,x).

5 Short Integer Solutions

Our next candidate family of functions is simpler. The key is a suitable modulus ¢ (e.g., taking ¢ = n
is fine) and a uniformly random matrix A ~ Zgp*™ for some m (more on how to choose m later).
The function f itself just applies the linear transformation A to its input, faq(x) := Ax mod g,
where we interpret our input as a vector x € Z;" and the resulting output lies in Zj.

Of course, as described, this function is certainly not secure. In particular, inverting f is
equivalent to solving a system of linear equations over Z,, which is easy. It can be done, e.g.,
using Gaussian elimination. (You might have only seen Gaussian elimination described over the
real numbers, the complex numbers, or the rationals. But, it works modulu ¢ as well.) To make
this function secure, we modify it in two clever ways, due to Ajtai [Ajt96].

First, we take m > 10nlogq to be much larger than n. As a result, every output vector y € Zy
has many different preimages & € Zi® such that Az = y mod ¢ (assuming that A has full rank,
which will be the case with high probability). Second, instead of allowing arbitrary input vectors
x € Zy', we only allow {0, 1}-vectors as input, & € {0,1}. (We do this for security, but it is also
rather convenient to work with bit vectors.)

Notice that, if we did one of these things but not the other, then f would not be secure. For
example, if n > m then Ax will typically have a single preimage, which can be found efficiently by
solving the system of linear equations. Restricting our input to bit vectors will not change that. On
the other hand, if we take m to be large but allow arbitrary input, then we can still use Gaussian
elimination to find a preimage =’ € Zy* with Az = Az’ mod q. In fact, we can find a whole affine
subspace of preimages x’.

But, if there are many preimages, it seems hard to pick out one whose coordinates happen to
be bits. In fact, Ajtai showed that this problem is hard if certain well-studied and seemingly hard
geometric problems called lattice problems are hard. (Lattice problems happen to be the focus of
much of my own research.) This gives quite a simple one-way function family.

The problem of finding @ € {0, 1}" such that Az = y mod q is called Short Integer Solutions
or just SIS.

A Proof that the order of an element divides the order of the
group

For each h € G, let Cp, :={h,h-g,h-g>,h-g%, ... h-g"1}, where k is the order of g. Notice that
|Ch| = k, i.e., all of the elements in this set are distinct (since if h-g* = h- ¢’ for some j <i < k—1,
then clearly g°~/ = e, contradicting the fact that the order of g is k). Such sets are called cosets.

We claim that for any two h,h' € G, either C}, = Cy or C, N Cyy = 0, i.e., any two cosets are
either identical or they share no elements in common. Indeed, suppose that r € C, N Cy. lLe.,
r=h-g¢t =N-g% for some £,¢'. Then, h = I -g*~* € Cy, and it follows that h-g' = b'-g"t'~t € Oy
for any . (Which parts of the definition of a group did we use here?)

Furthermore, notice that every element A € G must lie in at least one coset—specifically, C},
itself contains h.

So, G can be partitioned into disjoint sets Cj, with |C}| = k. It follows that & divides |G|. (The
quotient |G|/k is the number of distinct sets of the form C},.)

B Proof that Z; is cyclic for prime ¢

The elements of Z; must have order dividing |Z;| = ¢(q) = ¢ — 1. For a divisor d of ¢ — 1, let
Ng be the number of elements g € Z; with order d. We claim that Ny = ¢(d). In particular,
Ng-1 = ¢(q — 1), so that there are actually many generators of Z;, and it is therefore cyclic.

To see that Ny = ¢(d), first suppose that there exists one element g € Zg with order d. Then,
g* has order d for any k coprime to d. There are of course ¢(d) such elements g¥. Furthermore,
for all 1 < k < d, ¢* is a distinct root of the polynomial z% — 1 mod ¢. Since Zgq is a field, this
polynomial has at most d roots. So, there cannot be any other elements with order d.

The above shows that either Ny = 0 or Ny = ¢(d). To finish the proof, we use Euler’s identity:

> p(d)=m.

dlm
Applying this to m = ¢ — 1 and using the fact that Ny < ¢(d), we see that > Ny < ¢ — 1 with

equality if and only if Ny = ¢(d) for all d. Since) Ng = |Z;| = ¢ — 1, we must have Ng = ¢(d) for
all d.

References

[Ajt96] Mikl6s Ajtai. Generating hard instances of lattice problems. In STOC, 1996. 9

[HvdH21] David Harvey and Joris van der Hoeven. Integer multiplication in time o(nlogn) time.
Annals of Mathematics, 193(2):563-617, 2021. 6

[Kal02] Adam Kalai. Generating random factored numbers, easily. In SODA, 2002. 8

10

	One-way functions recap
	``Efficiently sampleable one-way functions'' and a better one-way function from the hardness of factoring
	Finishing our factoring example

	The discrete logarithm
	Background: commutative groups
	Background: exponentiation in a group
	Groups as computational objects, and the repeated squaring algorithm
	The discrete logarithm
	Where do G and g come from?

	One-way function families
	Short Integer Solutions
	Proof that the order of an element divides the order of the group
	Proof that Zq star is cyclic for prime q

