
A first look at computational security definitions, semantically

secure secret-key encryption, and one-way functions

Noah Stephens-Davidowitz

May 27, 2023

1 Probabilistic polynomial-time adversaries with negligible ad-
vantage

We saw in the last lecture some hints that it might be helpful to place some finite—but still
gigantic—bound on the computational power of our adversary Eve. If we really were trying to
model a very powerful but finite adversary in the physical world directly, we would say something
like “Eve can build the most powerful computer possible using the resources (like planets and the
sun and asteroids and whatever) available in our solar system, and she gets one trillion years to
correctly guess whether we encrypted m0 or m1 with probability at most 1/2 + 2−256.” (Notice
that it is trivial to succeed with probability 1/2, since a random bit will be correct with probability
1/2. The difference between Eve’s success probability and 1/2 is often called her advantage.) If we
had some encryption scheme that could not be broken by this kind of adversary, we’d be pretty
comfortable saying that it’s “unbreakable for all practical purposes.” (And, in practice, this is not
an absurd request either. I.e., we really do frequently use cryptographic schemes that we think
would be secure against such colossal adversaries.) But, as theorists, we’d rather not bring the
messiness of the real world into our beautiful mathematical world.

A more elegant solution is to model Eve by a (randomized) Turing machine and to bound her
running time by, say, 2256 bit operations and her success probability by 1/2+2−256. This definition
is perfectly reasonable (provided that one is careful with the specific model of computation chosen)
and is morally equivalent to our astronomical definition, but it turns out to still be very difficult
to work with (at least with the very primitive techniques that humanity has discovered thus far).

It turns out to be much easier to work with an asymptotic definition. So, instead of trying
to design schemes that have some concrete level of security (i.e., “no adversary running in time
2256. . . ”), we instead design schemes whose security level is governed by a parameter n known as
the security parameter. The security parameter is a bit of a tricky concept, but the rough idea is
that the security of the scheme should increase with larger security parameter. For example, the
length of the secret key in an encryption scheme might equal the security parameter (but it also
might not—and it is important not to conflate the two). We will require that our adversary Eve
runs in time that is at most some polynomial in the security parameter. E.g., Eve may run in time
n2 or n100 or 2256n or n2

128
, but not in time 2n or time 2

√
n/7 or time nlog log logn/2

100
. This definition

only makes sense if we leave the security parameter as a variable n and consider the asymptotic
behavior of the adversary as n→∞, i.e., it only makes sense asymptotically. (E.g., if I tell you that
n = 128 and ask you whether an adversary that breaks our scheme in 1, 000, 000, 000 bit operations

1

runs in time that is polynomial in n or superpolynomial in n, there’s simply no reasonable answer.
The question doesn’t make sense.)

I won’t attempt to justify this definition here except to say that it leads to a very rich and
beautiful theory, as we will see throughout this class. This definition also happens to lead to
ideas that are useful in practice. (In practice, one necessarily needs to fix some specific security
parameter, say n = 128, and one would therefore probably not be happy if an adversary can break
your encryption scheme in time nlog log logn/2

100
, nor is one concerned if your scheme can be broken

in time 2256n. So, asymptotic security and practical security are not the same thing. And, many
practical schemes don’t even have an asymptotic definition, in the sense that the scheme is only
defined for some fixed security parameter. But, it’s rare that we come up with natural cryptographic
schemes that are asymptotically secure but not practically secure.)

To make this a fair competition, we will only build cryptographic schemes that run in time
polynomial in the security parameter n as well. For example, we will only consider encryption
schemes in which the algorithms (Gen,Enc,Dec) run in polynomial time. So, nearly every algorithm
that we will consider in this class runs in time that is polynomial in n.1 And in general, we are
adopting the philosophy that polynomial-time algorithms are “efficient” while superpolynomial-
time algorithms are not. (Again, this is a super duper questionable philosophy, but it’s very
convenient and will turn out to be quite fruitful.)

We will always allow our adversaries to be randomized, and we call the class of adversaries that
we consider probabilistic polynomial-time adversaries, or just PPT adversaries. “Probabilistic”
to emphasize that they might be randomized, and “polynomial-time” because, well, they run in
polynomial time. Sometimes, we will vaguely say “efficient,” when we mean PPT.

Of course, if our adversaries are probabilistic, then their success or failure (where our definition of
success or failure will depend on the context—e.g., below “success” will be distinguishing between an
encryption of m0 and an encryption of m1) might depend on the random coinflips of the adversary,
as well as the random coins of, e.g., the key-generation algorithm and the encryption algorithm.
In particular, our adversaries will typically have some chance of successfully breaking our scheme.
E.g., if they sample a random bit string, there is some small probability that the resulting string will
be our secret key, in which case they will probably be able to break our scheme. But, intuitively, if
the probability that this happens is very low, then we are presumably fine with that. We therefore
need a notion of “probabilities that are so small that we don’t care about them.” To handle this,
it will be useful to define a negligible function ε(n).

Definition 1.1. A function ε : N → R is negligible if for every positive integer c, there exists an
nc such that for all n ≥ nc, |ε(n)| < 1/nc.

(This definition isn’t totally consistent across different sources. E.g., some sources will require
negligible ε(n) to be positive or to be non-negative. But, these differences don’t actually matter.
It’s also common to see formally different definitions of negligibility that are provably equivalent.
E.g., if you’ve seen asymptotic notation before, then you can simply say that ε(n) is negligible if
|ε(n)| = n−ω(1).)

In other words “ε(n) eventually decays faster than any inverse polynomial 1/nc.” For exam-
ple, the functions ε(n) = 2−n, ε(n) = n− logn, and ε(n) = 2−

√
n/1000 are all negligible functions.

1Notice that our adversary still has a huge advantage over us here. Specifically, while our algorithms like
(Gen,Enc,Dec) will be fixed algorithms running in some fixed polynomial time—say O(n2) time—we will consider
adversaries that run in time poly(n) for an arbitrarily large polynomial n. So, we must be secure against adversaries
running in time n3 but also n4 and n10 and n100, etc.

2

However, the functions ε(n) = 1/2, ε(n) = 1/n, and

ε(n) =

{
1/n n is prime

2−n otherwise.

are non-negligible.
A good way to think of this definition in this context is the following heuristic: “A polynomial-

time algorithm will never observe anything that happens with negligible probability.” This heuristic
is true in the sense that if I think of T -time algorithms loosely as “observers that can do something
roughly T times,” then presumably such observers don’t really care about events that happen with
probability much less than 1/T . Our definition of negligible guarantees that for any polynomial
running time T (n) = poly(n), ε(n)� 1/T (n) for sufficiently large n.

Anyway, the point is that in our security definitions, we won’t mind if some bad event (like Eve
guessing our secret key) happens with negligible probability.

(Try modifying the definition of negligible to see what happens. E.g., what happens if we remove
the condition that n ≥ n0? What happens if we say “there exists an n0 such that for every positive
integer c” instead of “for every c there exists an nc”? In general, whenever you see a definition,
you should try things like this. Usually, definitions that you encounter in a course or a textbook
or whatever are pretty well thought out, and it helps to see why the definition is as it is by seeing
what happens when you modify it.)

2 Secret-key encryption

We are now ready to define the semantic security of an encryption scheme (Gen,Enc,Dec). In fact,
we will define many-message semantic security.

In order to use our new tools of PPT adversaries and negligible functions, we will need to
somehow incorporate the security parameter into our definition. To that end, the Gen algorithm
will now take as input 1n, where n is the security parameter. Here, we have introduced common
(rather silly but very convenient) notation, in which we write 1n to represent the string 1111 · · · 1 ∈
{0, 1}n consisting of n ones in a row. (This is of course dangerous notation because it looks like
exponentiation. Fortunately, in this course, we will never actually want to raise 1 to the nth power,
so we’ll be okay :).)

In some sense, the purpose of giving the Gen algorithm 1n as input is just to let Gen “know”
the security parameter so that, e.g., Gen can choose the length of the secret key, or, more generally,
so that the choice of key can depend on the security parameter). We will also require that the
algorithms Gen, Enc, and Dec are PPT as well, since otherwise this is not a fair fight. Notice
that Gen takes 1n as input, and not the number n written in binary. This is a convenient trick
to ensure that Gen runs in time poly(n) if and only if Gen runs in time that is polynomial in the
length of its input (since the length of its input 1n is exactly n by definition).2 We will do the same
for our adversaries. I.e., our adversaries will always receive 1n as input (in addition to any other
input). Before you move on, make sure that you understand why we give the Gen algorithm and
our adversary 1n as input, as we’re going to use this idea a lot going forward.

2We could just as easily give Gen as input any arbitrary bit string of length n, or even any arbitrary bit string of
length poly(n).

3

Of course, our main issue with the one-time pad was that it can only be used once. (Except
for that fatal flaw, the one-time pad is great!) So, in order to resolve this issue, our new definition
will necessarily have to provide some security guarantee even when Alice sends many plaintexts
m1, . . . ,m` to Bob. This raises the question of how many plaintexts we should imagine Alice
sending. Our solution is to let the adversary decide. In fact, we will let the adversary choose
the plaintexts that Alice sends as well as the number of plaintexts `. Specifically, we will let the
adversary choose two lists of plaintexts M0 = (m1,0, . . . ,m`,0) and M1 = (m1,1, . . . ,m`,1), and the
adversary’s goal will be to guess which one we have encrypted. So, if a scheme is secure under
this definition, then no (PPT) adversary can even find two sequences M0 = (m1,0, . . . ,m`,0) and
M1 = (m1,1, . . . ,m`,1) whose encryptions it can distinguish. (This idea of letting the adversary
decide is common in cryptography. To make our security definitions as strong as possible, we try
to make the adversary’s life as easy as we can—and that often means letting the adversary have
control of as many things as possible.)

Here’s the definition written symbolically, which is a bit hard to understand.

Definition 2.1 (Many message semantic security). An encryption scheme (Gen,Enc,Dec) is many
message semantically secure if for every PPT adversary A, there exists a negligible function ε(n)
such that for all n,

Pr
b∼{0,1},k←Gen(1n)

(σ,m1,0,...,m`,0,m1,1,...,m`,1)←A(1n)

[A(σ,Enc(k,m1,b), . . . ,Enc(k,m`,b)) = b] ≤ 1/2 + ε(n) .

What this definition is really describing is a game that we can imagine the adversary A playing.
In this game, A chooses two lists of plaintexts, M0 := (m1,0, . . . ,m`,0) and M1 := (m1,1, . . . ,m`,1),
we encrypt either M0 and M1 using Enc and a key generated using Gen, and we ask the adversary
A to guess whether we encrypted M0 or M1. (Here, M0 and M1 are lists of plaintexts that are as
long as the adversary likes. But, notice that they must both have the same length.) The scheme is
secure if no PPT A can win this game with probability that is non-negligibly larger than 1/2.

The variable σ is the state of A. In other words, when A chooses M0,M1, it also outputs some
information σ about its choice, which it later might use to help it distinguish an encryption of M0

from an encryption of M1. E.g., σ might consist of any random coins flipped by A in choosing the
plaintexts M0,M1, or it might simply be σ = (M0,M1).

The notation above is pretty clunky, though. It is much cleaner to instead describe this directly
as an interactive game between the adversary A and a challenger, as represented below.

Adversary Challenger
INPUT: 1n INPUT: 1n

m1,0, . . . ,m`,0,m1,1, . . . ,m`,1−−→
b ∼ {0, 1}, k ← Gen(1n)
ci ← Enc(k,mi,b)

c1, . . . , c`←−−
b′−−→

IF b = b′,
OUTPUT “WIN”

4

It should be clear that a scheme is many message semantically secure if and only if no PPT
adversary wins this game with probability non-negligibly larger than 1/2. This game-based way of
viewing things is quite convenient. (But, it is sometimes important to remember that these pretty
diagrams can be converted into purely symbolic definitions like the one above.)

If we forget for a second about the computationally bounded adversary and the negligible
advantage ε, then notice that this really is the “many-time” variant of what we called “perfect
security against an adversary” in the previous lecture notes. Of course, we proved in the previous
lecture notes that such a many-time definition could not be achieved (in particular, if we take `
large enough so that |M`| > |K|, then the impossibility result from before rules out security). So,
we have to add the computational restriction on A and the small ε. We often call the difference
between the adversary’s success probability and 1/2, the adversary’s advantage, so that a succinct
way of describing this definition is to say that “no polynomial-time adversary has non-negligible
advantage in the above game.”3

3 Complexity theory is hard :(

Now that we have our definition, we would like to show a construction that provably satisfies it.
Unfortunately, we won’t succeed—at least not in this course, and perhaps not in my lifetime. If we
could prove that an efficient many message semantically security encryption scheme exists, then we
would immediately prove that P 6= NP. This seems hard. . .

Instead, we will only prove that such schemes exist under different computational assumptions—
i.e., we will prove conditional security. We will consider two broad classes of assumptions, which
I will loosely refer to as “specific” and “generic.” A specific complexity-theoretic assumption is
an assumption about a specific computational task, like factoring a number or breaking some
specific cryptographic construction. A generic assumption simply posits the existence of a certain
kind of computationally difficult task. E.g., “semantically secure secret-key encryption exists” is a
generic assumption, while “AES (the most popular secret-key encryption scheme used in practice)
is semantically secure” or “factoring is hard” are specific assumptions.

I won’t point out this distinction much going forward, but it’s worth keeping in mind.

3.1 Reductions

Our main tool for proving these conditional results is a reduction. Loosely speaking, for two
computational problems A and B, we say that “A reduces to B” if an efficient algorithm for B
can be converted into an efficient algorithm for A. I.e., “if B is easy to solve, then so is A.” For
example, many different problems related to graphs can be reduced to, say, breadth-first search,
and many different problems in number theory can be reduced to factoring.

You’ve likely seen reductions already in the context of NP-hardness. In particular, a problem
B is NP-hard if we can reduce SATISFIABILITY to B. The reason that we call this “hardness” is
because we take the contrapositive of the statement “if B is easy to solve, then so is A” to conclude
that “if A is hard to solve, then so is B.” So, if we have some problem A (like SATISFIABILITY)

3It is interesting to think about what happens if we do one of these things but not the other. E.g., what if we
require ε = 0 in the definition of semantic security but keep A bounded? Or what if we allow A to be unbounded
but keep a non-zero negligible ε? In the first case (when ε = 0), the definition is equivalent to Shannon security. In
the second case, the definition is slightly weaker than Shannon security, but a similar impossibility result holds for
such schemes as well.

5

that we believe is hard, and we can show how to reduce A to some other problem B, then we must
also believe that B is hard.

More formally, a reduction from A to B is an efficient algorithm that solves problem A given
black-box access to an algorithm that solves B. I.e., in addition to all the normal things that
algorithms can do (e.g., adding two numbers together, sorting lists, etc.), the reduction can can
also ask “what’s the solution to B(x)?” for any valid input x for problem B and get the solution.
Alternatively, we imagine that the reduction has access to an oracle that answers questions of that
form, and we call these questions oracle queries or just queries. To measure the running time of
such a beast, we count each of these queries as a single time step and simply add that number to
the running time of all the other normal algorithm-y stuff that the reduction does.

This is a very powerful tool for us (i.e., for humans) because we believe that lots of computational
problems are hard but we (humans) are unable to actually prove that they are hard. So, since it
seems to be too difficult for us to prove hardness outright, we often content ourselves with proving
that hardness of one problem implies hardness of another.

In cryptography, we take this idea really really far. In particular, nearly every proof that we
do starts by assuming that some problem A is hard, and then proving via a reduction that this
implies that some crypytographic scheme that we’ve built must be secure.

However, the reductions in cryptography are a bit different than the ones that you have probably
seen so far. In cryptography, we typically need to rule out adversaries that break our schemes with
any non-negligible advantage. This means that our reduction must work even if the adversary only
succeeds with some small (but still non-negligible) advantage.

For example, suppose we imagine some adversary E that breaks some encryption scheme
(Gen,Enc,Dec). What this means is that this adversary E has probability 1/2 + ε(n) of winning
the many-message semantic security for some non-negligible ε(n). This is a very specific guarantee.
It just guarantees that if we (1) sample a key k using the Gen algorithm, (2) receive two lists of
plaintexts from the adversary A, (3) choose (uniformly) a random list to encrypt, (4) send the
resulting ciphertexts to the adversary, and (5) ask her which list we encrypted, she will answer
correctly with probability non-negligibly larger than 1/2, maybe probability 1/2 + 1/n10. And this
is the only guarantee that we have on E . If our reduction uses E on input generated in a different
way (say, e.g., keys k sampled from a different distribution), then we lose even this tiny guarantee.

E.g., maybe our adversary only has an advantage in distinguishing encryptions of M0 from
encryptions of M1 when the first twenty bits of k ∈ {0, 1}n are zero, or when k is a prime number,
or when k has more ones than zeros in it, or whatever. Then, our reduction must itself at least
produce ciphertexts that correspond to such keys with non-negligible probability.

More generally, we must be very very careful about the distribution of the input to the adversary
E in these reductions, and we must be very careful to make sure that our reduction works even if
our adversary has just some small (but still non-negligible) advantage. It is surprisingly easy to
“prove” something that is false by getting this wrong.

3.2 On (non-)uniformity and who chooses the mi,j

Notice that in our definition of semantic security, we have switched from quantifying directly over
all plaintexts to having A output the plaintexts M ∈ M∗. (Recall that M∗ is the set of all
finite sequences of elements from M.) Since we are quantifying over all PPT algorithms A, this
is almost equivalent. But, notice that some sequences of plaintexts Mn are not possible. As a
trivial example, notice that a PPT algorithm A cannot output a sequence of plaintexts Mn, if Mn

6

has superpolynomial length. (Notice that here we are parameterizing by n, since otherwise it does
not make sense to ask whether M has length that is “polynomial in n.”) More generally, a PPT
algorithm can, of course, only output a sequence of plaintexts Mn that is efficiently computable.
(Really, here, we should be discussing families of distributions of sequences of plaintexts Mn—
families because they are parameterized by n and distributions because A is randomized—but we
will avoid this cumbersome terminology.)

The set of possible Mn actually depends quite a bit on our explicit model of computation.
In particular, there are two popular notions of PPT adversaries: uniform and non-uniform. A
uniform adversary can be modeled as a fixed Turing machine T that takes as input arbitrarily long
strings. It is probably the model that you have seen the most. (Of course, we will almost never talk
about the Turing machine T directly, and we will certainly not describe our algorithms as Turing
machines. One can also think of, e.g., a program written in Python.)

A non-uniform adversary can be thought of in multiple ways. One can think of it as a family
{Tn}n∈N of Turing machines (or programs written in Python), one for each input length n. The
“running time” of such a family on input x ∈ {0, 1}n is defined as the sum of the actual running
time together with the length of the description of Tn. One can equivalently think of a non-uniform
adversary as a fixed Turing machine T together with an advice function s(n). When such a Turing
machine receives input x ∈ {0, 1}n, it is also given as input s(n). The “running time” is again
|s(n)| plus the conventional running time. Yet a third model is as a family Cn of circuits, which
is a representation of an arbitrary function {0, 1}n → {0, 1}∗ as a composition of many two-bit
functions called gates, G : {0, 1}2 → {0, 1}. The “running time” of a circuit is the number of gates.
All of these non-uniform models lead to equivalent definitions of polynomial-time adversaries.

If our adversary is non-uniform, then asking the adversary to provide the challenge plaintexts
Mn is equivalent to quantifying over all Mn ∈M∗ with length polynomial in n, since we can always
consider the non-uniform PPT adversary that takes Mn as part of its advice string. But, if the
adversary is uniform, then some sequences Mn ∈M∗ simply cannot be computed by the adversary,
even if they are not particularly long.

We try to ignore this distinction as much as possible, and most of our definitions and proofs
will work in either model. But, formally the distinction does matter. For example, if we instead
defined semantic security by quantifying over all polynomial-length Mn, we would run into trouble
later in trying to prove security in the uniform setting. In particular, when we try to prove security
via a uniform reduction, we will posit the existence of an adversary that breaks this security and
derive a contradiction. But, if we wish to make any use of our hypothetical adversary, we will need
to efficiently compute some sequence of messages Mn for which it has an advantage.

4 One-way functions

Instead of trying to prove that P 6= NP, we will try to find the weakest complexity-theoretic
assumption that we can make that will imply the existence of secret-key encryption. Indeed, we
will see that the existence of a very simple cryptographic primitive called a one-way function
is equivalent to the existence of (1) secret-key encryption; and (2) many other really beautiful
cryptographic primitives. Intuitively, a one-way function is one way in the sense that it is easy to
compute, but hard to invert. I.e., “you can compute it in one direction, but not the other.” Here’s
the definition.

Definition 4.1. A function f : {0, 1}∗ → {0, 1}∗ is a one-way function if it satisfies the following

7

two criteria.

• Easy to compute. There exists a PPT algorithm B such that ∀x ∈ {0, 1}∗, B(x) = f(x).

• Hard to invert. For any PPT adversary A, there exists a negligible function ε(n) such that
for all n ≥ 1,

Pr
x∼{0,1}n

[x′ ← A(1n, f(x)), f(x′) = f(x)] ≤ ε(n) .

There are many things to notice about this definition. First, notice that this definition has a
very different form than our definition of semantic security of an encryption scheme. Our definition
of semantic security was an indistinguishability-based definition, in which the adversary A only
needed to guess one bit b with probability non-negligibly better than a random guess. In contrast,
here we ask the adversary A to output a whole string x′! For example, if f is an injective function,
then our adversary must output all n bits of x exactly. (If f is not injective, then there could
be many x′ with f(x) = f(x′), each of which is a valid answer.) In this case, a random guess is
successful with probability only 2−n, which is why here we ask that the adversary has negligible
probability of success, rather than 1/2 + negl(n). This distinction is similar to the distinction
between a computational search problem and a computational decision problem.

So, relative to the notion of semantic security, one-way functions should seem like relatively
weak primitives.

It is always a good idea to play with a definition to see what happens when you change things.
For example, what happens if we say that the adversary wins only if x′ = x, instead of when
f(x′) = f(x)? Well, then the function f(x) = 1 would be “a one-way function,” since no adversary
(PPT or otherwise) can possibly win the corresponding game with probability better than 2−n.
(Make sure you see this.) So, this definition would be rather silly.

As another example, let’s think about what happens if we do not give the adversary 1n as input.
I.e., what if we replace the inequality in the definition of hardness of inversion by

Pr
x∼{0,1}n

[x′ ← A(f(x)) : f(x′) = f(x)] ≤ ε(n) ?

(This is the same thing except that I removed the 1n from the definition.) Then, consider the
function f(x) = |x|, where |x| is the length of x written in binary. I claim that this function is
“hard to invert” under this new definition. (Why?)

On the other hand, the definition as we wrote it (the “right” definition) is non-trivial in the
sense that the existence of a one-way function immediately implies that P 6= NP. To see this,
consider the NP (search) problem in which the input is 1n and y ∈ {0, 1}∗ and the goal is to find
x ∈ {0, 1}n such that f(x) = y (if such an x exists). Notice that this problem is in NP but not in
P if f is a one-way function.

However, in some sense the existence of a one-way function implies something that seems qual-
itatively much stronger than P 6= NP. In particular, we do not simply ask that it is hard to invert
f in the worst case (i.e., that there exists x such that, given f(x), it is difficult to find x′ with
f(x) = f(x′)), but instead that it is hard to invert f on the average, with any non-negligible
probability.

4.1 Welcome to Minicrypt!

In Russell Impaggliazzo’s famous paper from 1995 [Imp95], he defined what are now known as
“Russell’s five worlds,” five different scenarios that are compatible with what we currently know

8

how to prove. E.g., the world in which P = NP is called Algorithmica. This is a world in which
algorithms are extremely powerful and useful. Most of what we learn in this course would be useless
in Algorithmica, so we won’t spend much time talking about it. . .

The world in which one-way functions exist (but certain fancier cryptographic primitives like
public-key encryption do not) is called Minicrypt. We will spend about half of this class in
Minicrypt, and we’ll see that Minicrypt is a pretty amazing place. For example, we will see that
many-message semantically secure secret-key encryption, zero-knowledge proofs, and signatures are
in Minicrypt!

Nevertheless, we will leave Minicrypt eventually to enter what Russell called Cryptomania! This
is the world in which public-key encryption exists. (There is also a new world that was discovered
after Russell’s paper, which some people have called Cryptofantasia. In Cryptofantasia, a rather
strange primitive called indistinguishability obfuscation exists.)

For completeness, I should tell you about Russell’s two remaining worlds: Heuristica and Pes-
siland. But, I won’t because I want to encourage you to read Russell’s paper yourself. It is very
short and very fun to read [Imp95].

5 Factoring and weak one-way functions

It remains to actually build a one-way function. There’s actually a very natural candidate that
you might have thought of yourself. Let f(p, q) := pq, where p ∈ [0, 2bn/2c − 1] is a non-negative
integer with bit length at most bn/2c and q ∈ [0, 2dn/2e−1] is a non-negative integer with bit length
at most dn/2e. Of course, f is efficiently computable. And, inverting f is exactly the problem of
finding a factorization of the integer pq. And, “factoring is hard,” so this should be a one-way
function, right?

Well, no. First, there’s a silly problem. First, notice that p′ = 1, q′ = N ∈ [0, 22blog2Nc+1 − 1]
is a valid inverse for any N . (Notice that the bit length of p′, q′ does not need to be the same as
the bit length of the original input p, q to f .) So, we should probably make our function either
f(p, q) = (p + 2)(q + 2) or effectively disallow 1 as an input by defining f(1, q) = f(p, 1) = 0, and
f(p, q) = pq when p, q 6= 1. In fact, one-way functions with restricted input (e.g., p, q ∈ [2, 2n/2− 1]
or even p, q ∈ {0, 2, 3, . . . , 2n/2 − 1}) are just as good as one-way functions. Below, we simply take
p, q ∈ [2, 2n/2 − 1]. So, now in order to break our one-way function, an adversary must find factors
of N that are greater than 2.

The more serious problem is that, while factoring is thought to be hard in the worst case, it
is certainly not hard to find a non-trivial factor of a random integer, or a random product of two
integers. For example, if p ∼ [2, 2bn/2c − 1], then p is even with probability 1/2, and the same is of
course true for q ∈ [2, 2dn/2e − 1]. So, with probability 3/4, pq = 2 · (pq/2) is a valid factorization,
and there is therefore a trivial algorithm that inverts f with probability 3/4.

One can try to fix this by enforcing some restrictions on p and q. Ideally, one would like to
restrict to the case when p and q are prime, and we will work with this variant later. But, for now,
let’s consider the following much weaker definition.

Definition 5.1. A function f : {0, 1}∗ → {0, 1}∗ is a weak one-way function if it satisfies the
following two criteria.

• Easy to compute. There exists a PPT algorithm B such that ∀x ∈ {0, 1}∗, B(x) = f(x).

9

• Weakly hard to invert. There exists some positive integer c such that for any PPT adver-
sary A, there exists an n0 such that for all n ≥ n0,

Pr
x∼{0,1}n

[x′ ← A(1n, f(x)), f(x′) = f(x)] ≤ 1− 1/nc .

Again, it is always a good idea to play with a definition when you first see it. For example,
what happens if we remove the condition that n ≥ n0? What if we reverse the quantifiers and say
“for every PPT adversary, there exists a c”?

We do not know whether or not the multiplication function f(p, q) = pq is even a weak one-way
function because we do not even know how to prove unconditionally that anything is a weak one-way
function. But, we think it probably is. For example, with probability Θ(1/n2), p ∼ [2, 2bn/2c − 1]
and q ∼ [2, 2dn/2e − 1] will be large primes (say, primes larger than 2n/2−10). And, we think that it
is likely difficult to factor the product of two random large primes. More generally, this definition
captures the idea that “there is some non-negligible subset of inputs x for which f(x) is hard to
invert.”

Now, we show that the existence of any weak one-way function implies the existence of a
(“strong”) one-way function. (Of course, the other direction is obvious, so that the existence of
weak one-way functions is equivalent to the existence of strong one-way functions.) This will be
our first reduction.

Theorem 5.2. If a weak one-way function f exists, then there exists a strong one-way function g.

The idea behind the proof is to simply take g(x1, . . . , x`) := (f(x1), f(x2), . . . , f(x`)) for some
suitably large choice of ` with n := `m and xi ∈ {0, 1}m. (We ignore the issue that n might not
be decomposable into factors `,m of the appropriate size. To fix this, we can simply ignore any
“extra” input bits to g.)

The proof will then suppose that there exists a PPT adversary A that inverts g with non-
negligible probability ε(n), and attempt to prove that the existence of such an adversary implies
an A′ that inverts f with probability greater than 1 − 1/mc for infinitely many m. This would
contradict the assumption that f is a weak one-way function. (Nearly all of our proofs have this
form.)

Here’s a first attempt: Our adversary A′ takes as input y∗ := f(x∗) for x∗ ∼ {0, 1}m. It then
samples x2, . . . , x` ∼ {0, 1}m, compute yi := f(xi), and compute (x′1, . . . , x

′
`)← A(1n, y∗, y2, . . . , y`).

If we do this many times, say, 100nc/ε(n) times, then we would expect to find at least one time
when f(x′1) = y∗. The problem with this strategy is that it doesn’t work because our adversary
A might be, well, adversarial. For example, suppose that A refuses to output anything (or always
outputs 0 or whatever) when the first bit of x1 is 0. Such an A could still have very large advan-
tage, but our new adversary A′ would fail with probability 1/2 in this case—much higher than the
probability of 1/mc that we need.

But, suppose that A instead refused to output anything if any of the xi had first bit zero. Such
an adversary A could not have advantage larger than 2−`, which is much less than 1/nc (for large
enough n). This suggests that we should try putting our input y∗ in many different positions.

Ok. . . here’s the real proof.

Proof. It is trivially the case that g is efficiently computable, since f is. So, we “only” need to
prove that g is hard to invert.

10

Suppose that there exists a PPT adversary A that inverts g with non-negligible probability
ε(n). I.e., for infinitely many n, ε(n) ≥ 1/nd for positive integer d. We may take ` > dmc log(n) to
be large enough that (1− 1/(2mc))` ≤ 1/(2nd).4 Then, we wish to construct an adversary A′ that
inverts f on input with length m with probability greater than 1− 1/mc for infinitely many m.

Our adversary A′ takes as input 1m and y∗ := f(x∗) for x∗ ∼ {0, 1}m. It then does the following
10mc`nd+1 times for each i ∈ [1, `]. It sets yi := y∗, and for each j ∈ [1, `] with j 6= i, it samples
xj ∼ {0, 1}m and sets yj := f(xj). Finally, it calls A on input (1n, (y1, . . . , y`)), receiving as output
(x′1, . . . , x

′
`). If at some point it finds x′i with f(x′i) = y∗, it outputs x′i. If it finishes the loop

without finding such an x′i, it simply fails.
It is clear that A′ is a PPT algorithm. We wish to show that it succeeds with probability larger

than 1−1/mc for infinitely many m. To that end, for x ∈ {0, 1}m let Ei(x) be the random variable
obtained as follows. Set yi := f(x), and for each j ∈ [1, `] with j 6= i, sample xj ∼ {0, 1}m and
set yj := f(xj). Then, Ei(x) = 1 if A(1n, (y1, . . . , y`)) outputs a valid inverse (x′1, . . . , x

′
`) with

f(x′i) = yi for all i and Ei(x) = 0 otherwise. Let

BAD(x) := {x ∈ {0, 1}m : ∀i, Pr[Ei(x) = 1] < 1/(2mc`nd)} .

First, notice that for x∗ /∈ BAD,

Pr[x′ ← A′(1m, f(x∗)), f(x) 6= f(x′)] ≤ max
i

Pr[Ei(x
∗) = 0]10m

c`nd+1

≤ (1− 1/(2mc`nd))10m
c`nd+1

≤ e−n .

In other words, if x∗ is not in the “bad set” then our reduction will find an inverse with high
probability.

So, it remains to prove that Prx∗∼{0,1}m [x∗ ∈ BAD] ≤ 1/mc − e−n, since then we would have

Pr
x∗∼{0,1}m

[x′ ← A′(1m, f(x∗)), f(x′) = f(x∗)] ≥ Pr[x∗ /∈ BAD] · Pr[x′ ← A′(1m, f(x∗)), f(x) = f(x′) | x∗ /∈ BAD]

≥ (1− e−n)(1− 1/mc + e−n)

≥ 1− 1/mc ,

as needed.
LetX := (x1, . . . , x`) and I(X) be the event thatA successfully inverts on input (1n, f(x1), . . . , f(x`)).

We have

Pr
x1,...,x`∼{0,1}m

[I(X)] = Pr[I(X) and ∃i, xi ∈ BAD] + Pr[I(X) and ∀i, xi /∈ BAD]

≤
∑̀
i=1

Pr[I(X) and xi ∈ BAD] + Pr[∀i, xi /∈ BAD]

<
1

2mcnd
+ Pr
x∗∼{0,1}m

[x∗ /∈ BAD]` .

Since Pr[I(X)] ≥ 1/nd by assumption, it follows that Pr[x∗ /∈ BAD] ≥ 1/(2nd)1/` ≥ 1−1/mc+e−n,
as needed.

4There is a small subtlety here in that d represents the advantage of our adversary A, but this advantage can
depend on `. Formally, we should fix some ` > ω(mc log(m)), e.g., ` = mc+1 log(m). Then, if our adversary has
success probability 1/nd for any constant d, this inequality will hold for sufficiently large n.

11

References

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in Com-
plexity Theory Conference, 1995.

12

	Probabilistic polynomial-time adversaries with negligible advantage
	Secret-key encryption
	Complexity theory is hard :(
	Reductions
	On (non-)uniformity and who chooses the plaintexts

	One-way functions
	Welcome to Minicrypt!

	Factoring and weak one-way functions

