
Goldreich, Micali, and Wigderson 2PC

Noah Stephens-Davidowitz

June 9, 2023

1 Recap

In the previous lectures, we saw the definition of secure two-party computation (2PC, in the honest-
but-curious setting), and oblivious transfer (OT). We also constructed OT. In this lecture, we will
show how to use OT in order to build 2PC for arbitrary efficient functions. Specifically, we will
see a construction due to Goldreich, Micali, and Wigderson [GMW87], which is commonly known
as the GMW protocol. In the next lecture, we will see a very different strategy, based on Yao’s
garbled circuits.

2 The GMW protocol

The idea behind the GMW protocol starts with the concept of secret sharing. We will actually
only need a two-out-of-two secret-sharing scheme for a one-bit secret s. For this, as we saw earlier,
there is an extremely simple scheme. Alice has a one-bit share a ∈ {0, 1} and Bob has a one-bit
share b ∈ {0, 1}. The shares are uniformly random subject to the restriction that s = a⊕ b. Recall
that, from Alice’s perspective, a is a uniformly random bit independent of s, and similarly from
Bob’s perspective b is a uniformly random bit. But, clearly the two bits together are enough to
reconstruct s.

We view the function f that we are trying to compute as a circuit, and we imagine the com-
putation defining a value for each gate in the circuit. Of course, if we want a secure protocol for
two-party computation, then in general we will not want either Alice or Bob to learn the value of
any individual gate (except the input and output), but if we want the protocol to be correct, they
should have enough information between the two of them to determine the value of any gate.

This makes it quite natural to use secret sharing for two-party computation. In particular, for
any gate G : {0, 1}2 → {0, 1}, we wish to show how Alice and Bob can engage in a protocol whose
input is two bits a1, a2 ∈ {0, 1} for Alice and two bits b1, b2 ∈ {0, 1} for Bob and whose output
is a single bit a3 ∈ {0, 1} for Alice and one for Bob b3 ∈ {0, 1} with the following property. a3
and b3 should be uniformly random bits satisfying a3 ⊕ b3 = G(a1 ⊕ b1, a2 ⊕ b2). In other words,
Alice and Bob start out with a secret sharing (a1, b1) of the first input bit w1 and a secret sharing
(a2, b2) of the second input bit w2, and they end up with a secret sharing (a3, b3) of the output bit
w3 = G(w1, w2).

If Alice and Bob can compute such a functionality securely, then Alice and Bob can securely
compute any efficiently computable function f . To do so, they first create shares ai, bi for each
input gate. I.e., for each input gate wi corresponding to one of Alice’s input bits xj , Alice samples
bi ∼ {0, 1} uniformly at random and sends it to Bob, keeping ai := xj ⊕ bi for herself. Bob does

1



the same with his input bits. Then, Alice and Bob can engage in the above protocol to compute
shares of the value of each gate in the circuit. In particular, they will eventually compute shares
of the output gates. Let’s say for simplicity that there is just one output bit wm and that Alice is
meant to learn the output bit, but Bob learns nothing. (I.e., the function that we wish to compute
has the form f(x, y) = (g(x, y),⊥), where g has one bit as output. This can be generalized to many
output bits for each party by repeating the protocol many times—though of course this is not the
most efficient way to accomplish this.) Then, at the end of the protocol, Bob can simply send Alice
bm, allowing Alice to compute wm = am ⊕ bm. (One can be slightly more clever about the output
gate to just directly have wm = am.)

2.1 Aside: XOR and NOT for free

Before we see how to compute a general gate, let’s notice that Alice and Bob can compute some
gates locally, i.e., without any interaction at all. E.g., suppose that G(x1, x2) = x1 ⊕ x2 is the
XOR gate. Then, if Alice has a1, a2 ∈ {0, 1} and Bob has b1, b2 ∈ {0, 1} with x1 = a1 ⊕ b1 and
x2 = a2 ⊕ b2, they can simply compute a3 := a1 ⊕ a2 and b3 := b1 ⊕ b2 to get shares of x1 ⊕ x2. In
particular, a3 ⊕ b3 = a1 ⊕ a2 ⊕ b1 ⊕ b2 = x1 ⊕ x2, as needed.

Similarly, the NOT gate G(x) = ¬x is trivial to compute, since (¬a)⊕ b = ¬(a⊕ b). So, if Alice
and Bob have shares a, b for some bit x, they can trivially compute shares a′ := ¬a and b′ := b of
¬x.

These little tricks are not necessary from our perspective. We will show how to handle any gate
generically below. But, they are quite important for practical applications because they drastically
improve efficiency.

2.2 Any gate with one-out-of-four OT

Recall that a one-out-of-two oblivious-transfer protocol (or just an OT protocol) is a secure protocol
that behaves as follows. Alice’s input is m0,m1 ∈ {0, 1}, and Bob’s input is b ∈ {0, 1}. Alice’s
output is nothing, and Bob’s output is mb. Intuitively, “Bob should learn mb but not m1−b, and
Alice should not learn Bob’s bit b.”

There is a very natural way to generalize this. In particular, in a k-out-of-` OT protocol, Alice’s
input is n bits m1, . . . ,m` ∈ {0, 1} and Bob’s input is k distinct indices i1, . . . , ik ∈ [`]. Alice’s
output is still nothing, and Bob’s output is mi1 , . . . ,mik . In other words, “Bob learns k of the
messages but none of the others, and Alice learns nothing about Bob’s indices i1, . . . , ik.”

For our current purposes, we will need one-out-of-four OT. In this case, it is natural to think
of Bob’s input as two bits b1, b2 ∈ {0, 1}, and Alice’s messages as m0,0,m0,1,m1,0,m1,1 ∈ {0, 1}.

Let’s see how to use one-out-of-four oblivious transfer to allow Alice and Bob to compute shares
a3, b3 of the output of some gate G given shares a1, a2, b1, b2 of the input. To do so, Alice will sample
a3 ∼ {0, 1} uniformly at random and set m0,0 := a3⊕G(a1⊕0, a2⊕0), m0,1 := a3⊕G(a1⊕0, a2⊕1),
m1,0 := a3 ⊕ G(a1 ⊕ 1, a2 ⊕ 0), and m1,1 := a3 ⊕ G(a1 ⊕ 1, a2 ⊕ 1). Bob receives b3 := mb1,b2 =
a3 ⊕G(a1 ⊕ b1, a2 ⊕ b2). In particular, a3 ⊕ b3 = G(a1 ⊕ b1, a2 ⊕ b2) which is what we want.

Since this is a little abstract, we give a concrete example. Suppose the gate G is an AND gate
and Alice’s input buts are a1 = 0, a2 = 1. Suppose she samples a3 = 1. Then, her messages will be
m0,0 = 1, m0,1 = 1, m1,0 = 0, and m1,1 = 1. Notice that mb1,b2 ⊕ 1 = AND(b1, b2 ⊕ 1) for all b1, b2.

2



2.3 Putting everything together and a proof of security

So, the full Goldreich-Micali-Wigderson protocol works as follows. Alice and Bob create shares
a1, . . . , an, b1, . . . , bn ∈ {0, 1} for the input gates of the circuit as we described in the beginning.
Then, for each gate G with input bits wi, wj and output bit wk, they use their shares ai, aj , bi, bj ∈
{0, 1} with ai ⊕ bi = wi and aj ⊕ bj = wj and the one-out-of-four oblivious transfer protocol to
compute shares ak, bk ∈ {0, 1} with ak ⊕ bk = wk := G(wi, wj).

Once they have done this for every gate, Alice sends Bob her shares corresponding to Bob’s
output gates, and Bob sends Alice his shares corresponding to Alice’s output gate. The parties can
then use these to find their respective outputs.

Theorem 2.1. The GMW protocol described above is a secure protocol for two-party computation
against honest-but-curious adversaries, provided that the underlying (one-out-of-four) OT scheme
is secure against honest-but-curious adversaries.

Proof. To prove the security of the parties, we need to construct a PPT simulator SA for Alice
and a PPT simulator SB for Bob. Crucially, we assume that the OT protocol is secure, which
means that there are PPT simulators SA,OT and SB,OT that simulate the views of Alice and Bob
respectively in the OT protocol. Let’s build Alice’s simulator SA first.

Alice’s simulator SA takes as input Alice’s own input x and her output fA(x, y), and for every
input pair x, y, the simulator’s output SA(x, fA(x, y)) must be computationally indistinguishable
from Alice’s view in a real run of the protocol with Bob. Alice’s view consists of four things: her
bits ai, the bits bi from Bob that she gets to see when wi is either one of Alice’s input gates or one

of Alice’s output gates, and for each gate, the messages m
(G)
0,0 ,m

(G)
0,1 ,m

(G)
1,0 ,m

(G)
1,1 ∈ {0, 1} that Alice

produces for the OT protocol, and Alice’s view in the OT protocol corresponding to the gate.
Alice’s simulator first samples uniformly random bits a1, . . . , a` ∼ {0, 1}, one for each gate in

the circuit. And, for each input gate wi corresponding to input bit xj , the simulator computes
bi := ai ⊕ xj . Similarly, for each output gate wi corresponding to output bit zj , the simulator
computes bi := ai ⊕ zj .

Then, for each gate G in the circuit, the simulator computes m
(G)
0,0 ,m

(G)
0,1 ,m

(G)
1,0 ,m

(G)
1,1 ∈ {0, 1}

just like Alice would, i.e., m
(G)
b′1,b

′
2

= akG ⊕G(aiG ⊕ b′1, ajG ⊕ b′2), where iG, jG are the indices of the

parent gates of G and kG is the index of the gate itself. The simulator SA then runs the SA,OT on

input m
(G)
0,0 ,m

(G)
0,1 ,m

(G)
1,0 ,m

(G)
1,1 ∈ {0, 1}, receiving a simulated view for the run of the OT protocol

corresponding to gate G. (Remember that SA,OT takes as input m0,0,m0,1,m1,0,m11 ∈ {0, 1} and
outputs a view that is indistinguishable from Alice’s view in an honest run of the protocol. If Alice
had any output in the OT protocol, then the simulator would need output as well.) SA outputs

Alice’s input bits, her output bits, the ai, the bi, the plaintexts m
(G)
b′1,b

′
2
, and the simulated views (in

the appropriate order).
Notice that the ai are distributed identically to those produced in the honest protocol, since in

both cases, they are simply uniformly random bits. The messages m
(G)
b′1,b

′
2

are deterministic functions

of the ai, so they must be distributed correctly as well. Similarly, the bi corresponding to the input
and output gates are deterministic functions of the ai and Alice’s input and output, so they are also
distributed correctly. Finally, by the security of the OT protocol, the views simulated by SA,OT

are indistinguishable from the views produced in an honest interaction with Bob. (Formally, we
should do a hybrid argument here, with one appeal to OT security for each gate.)

3



Now, for Bob’s simulator, SB. SB basically does what SA did. Specifically, it needs to compute
three things: Bob’s bits b1, . . . , b` (most of which are output from the OT protocol), the ai corre-
sponding to Bob’s input and output, and Bob’s views in the many OT protocols. I.e., it samples
uniformly random bits b1, . . . , b` ∼ {0, 1}, for each input gate wi corresponding to one of Bob’s
input bits yj , it computes ai := bi ⊕ yj , and similarly for Bob’s output. Then, for each OT gate
with input bits wi, wj and output bit wk, it runs SB,OT on input (bi, bj) and mbi,bj := bk, and
receives as output some view for Bob. (Recall that SB,OT takes as input two input bits (b1, b2) and
one output plaintext mb1,b2 .) Finally, SB outputs Bob’s input and output bits, the bi, the ai, and
all of the simulated OT views (in the appropriate order).

To see that the simulated view is indistinguishable from an honest view, simply note that the
bi are in fact uniformly random and independent of everything else in the honest protocol, so that
they are distributed identically in the simulated view and in the honest view. (In particular, the
bi corresponding to input bits are sampled uniformly at random from Bob. All other bi have the
form bi := ai ⊕wi, where ai is a fresh uniformly random bit and wi is fixed given the inputs.) The
ai corresponding to input and output bits are deterministic functions of the bi, y, and fB(x, y).
So, they are distributed correctly as well. Finally, the OT views are indistinguishable from honest
views by the security of the OT protocol.

3 One-out-of-four OT

The GMW protocol requires a one-out-of-four OT protocol as a subprocedure. So, to actually
instantiate it, we still need to show how to build one-out-of-four OT.

We can actually build it directly in the same way that we built one-out-of-two OT directly
from an encryption scheme with an oblivious key-generation algorithm. Specifically, in such a
protocol, Bob simply samples a public-key secret-key pair skb1,b2 , pkb1,b2 , and then for all b′1, b

′
2 with

(b′1, b
′
2) 6= (b1, b2), he samples a public key pkb′1,b′2 obliviously. He then sends pk0,0, pk0,1, pk1,0, pk1,1

to Alice. Alice encrypts each mb′1,b
′
2

under the public key pkb′1,b′2 , and sends the resulting ciphertexts
to Bob. Bob then decrypts the one ciphertext encrypted using pkb1,b2 and outputs the result.

The proof of security for the above scheme in the honest-but-curious model is essentially identical
to the proof for the similar one-out-of-two OT protocol that we saw earlier. However, as I said
repeatedly in the previous lecture, this is a bit of a disappointing protocol since there is such an
obvious way for Bob to cheat, which is not captured by the honest-but-curious model. (He can just
sample four public-key secret-key pairs!) So, we will show a way to directly convert any one-out-
of-two OT protocol into one-out-of-four OT. In particular, this construction will be secure against
malicious adversaries if the original one-out-of-two OT protocol is.

The idea behind the construction is quite simple, though some thought is necessary to under-
stand the details. The high-level idea is simply that Alice should sample uniformly random pad
bits kb1,b2 ∼ {0, 1} and send Bob cb1,b2 := mb1,b2 ⊕ kb1,b2 . Alice and Bob then engage in a few
one-out-of-two OT protocols in such a way that at the end, Bob learns the one-time pad kb1,b2 but
all other one-time pads are still uniformly random from his perspective.

Here’s the actual protocol. Alice receives as input m0,0,m0,1,m1,0,m1,1 and samples six bits

4



uniformly at random p
(1)
0 , p

(1)
1 , p

(2)
0 , p

(2)
1 , p

(3)
0 , p

(3)
1 ∼ {0, 1}. We then define

c0,0 := m0,0 ⊕ p
(1)
0 ⊕ p

(2)
0

c0,1 := m0,1 ⊕ p
(1)
0 ⊕ p

(2)
1

c1,0 := m1,0 ⊕ p
(1)
1 ⊕ p

(3)
0

c1,1 := m1,1 ⊕ p
(1)
1 ⊕ p

(3)
1 .

Notice that, if Alice reveals exactly one of p
(i)
0 , p

(i)
1 for each i = 1, 2, 3, then Bob will be able to

“decrypt” exactly one “ciphertext” cb1,b2 , and all other cb′1,b′2 will be independent uniformly random
bits from Bob’s perspective.

So, Alice and Bob engage in three one-out-of-two OT protocols. In the first, Alice takes as

her input p
(1)
0 and p

(1)
1 , and Bob takes as his input his first input bit b1, so that he receives p

(1)
b1

.

In the second, Alice uses p
(2)
0 and p

(2)
1 and Bob uses his second input bit b2, so that he receives

p
(2)
b2

. In the third, Alice uses p
(3)
0 and p

(3)
1 and Bob again uses his second input bit b2, so that

he receives p
(3)
b2

. Finally, Alice sends the ciphertexts c0,0, c0,1, c1,0, c1,1 to Bob, and Bob computes

mb1,b2 = cb1,b2 ⊕ p
(1)
b1
⊕ p

(2+b1)
b2

.
(It is a nice exercise to try to determine whether this is the most efficient construction. Can

you get one-out-of-four OT from just two runs of an OT protocol? Can you get a secure protocol
that samples fewer than six random bits?)

References

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In STOC,
1987. 1

5


	Recap
	The GMW protocol
	Aside: XOR and NOT for free
	Any gate with one-out-of-four OT
	Putting everything together and a proof of security

	One-out-of-four OT

