
Secret Sharing

Noah Stephens-Davidowitz

June 9, 2023

1 Secret Sharing

Imagine that there is some extremely sensitive piece of information s ∈ {0, 1}`—maybe it’s the
codes to launch a nuclear missile or the script for the season finale of your favorite TV show. This
information might be too sensitive to trust with any one person, but maybe we can trust it to a
group of people. E.g., maybe we can give Alice some bit string σ1, give Bob σ2, and Charlie σ3, in
such a way that (1) knowledge of σ1, σ2, and σ3 is sufficient to recover s; but (2) knowledge of just
σi for some fixed i is not sufficient to recover s. We call this a secret-sharing scheme, and we call
s the secret and σi the shares of s.

In fact, we can do better. We can make it so that σ1, σ2, and σ3 together are enough to recover
the secret s, but any pair of shares (σi, σj) reveals no information about the secret s.

This abstract discussion is actually rather silly for this particular example because there is such
a simple scheme that achieves this. Let σ1, σ2 ∼ {0, 1}` (i.e., Alice and Bob are given uniformly
random `-bit strings), and let σ3 := s ⊕ σ1 ⊕ σ2 ∈ {0, 1}`. (This scheme might seem strangely
asymmetric, since Charlie’s share σ3 was constructed differently than the other two shares. But,
it is actually completely symmetric, since we can equivalently describe this scheme as sampling
uniformly random (σ1, σ2, σ3) subject to the constraint that σ1 ⊕ σ2 ⊕ σ3 = s.) Then, it is trivial
to recover s given σ1, σ2, and σ3, since s = σ1 ⊕ σ2 ⊕ σ3. However, clearly σ1 and σ2 alone yield
no information whatsoever about s, since they were chosen uniformly random and independently
of s. And, a simple analysis shows that (σ2, σ3) is also uniformly random and independent of s, as
is (σ1, σ3).

This is called a 3-out-of-3 secret-sharing scheme because there are three shares, and all three
of them are required to reconstruct the secret s. We can generalize this idea to t-out-of-k secret
sharing for any 1 ≤ t ≤ k as follows.

Definition 1.1. For 1 ≤ t ≤ k, a t-out-of-k secret-sharing scheme with secret space M is a pair
of algorithms Share and Reconstruct with the following properties.

1. (Correctness.) For any secret s ∈M and any t distinct indices i1, . . . , it ∈ [k],

Pr
(σ1,...,σk)←Share(s)

[Reconstruct((i1, σi1), . . . , (it, σit)) = s] = 1 .

(In other words, if the Reconstruct algorithm is given any t distinct shares—together with the
corresponding indices ij—it can always reconstruct the secret.)

1



2. (Security.) For any two secrets s, s′ ∈ S and any t − 1 indices i1, . . . , it−1 ∈ [k], the
distributions (σi1 , . . . , σit) and (σ′i1 , . . . , σ

′
it−1

) are identical, where (σ1, . . . , σk) ← Share(s)
and (σ′1, . . . , σ

′
k)← Share(s′). Equivalently, for any β1, . . . , βt−1,

Pr
(σ1,...,σk)←Share(s)

[∀j, σij = βj ] = Pr
(σ′1,...,σ

′
k)←Share(s′)

[∀j, σ′ij = βj ] .

(In other words, the joint distribution of any t− 1 shares are independent of the secret s.)

Let’s try to parse this definition. The correctness property is relatively straightforward—it says
that any t distinct shares are sufficient to recover the secret, and specifically that this can be done
via the Reconstruct algorithm. The security property is a formal way to say that any t− 1 shares
“reveal no information about the secret.” Specifically, for any two secrets s, s′ ∈ M, if the shares
were sampled by Share(s) or Share(s′), the distribution of any t−1 shares will be exactly the same.

Notice that this is a purely information-theoretic security definition. We could have instead only
asked that the shares (σi1 , . . . , σit−1) and (σ′i1 , . . . , σ

′
it−1

) were computationally indistinguishable,
rather than identically distributed. But, since we can get away with a stronger information-theoretic
definition, we will stick with this.

Notice also that our XOR-based scheme above did in fact satisfy this definition for k = t = 3.
More generally, a simple XOR-based scheme works for any k = t. E.g., to share s ∈ {0, 1}` among
k parties so that only all k parties together can recover the s, simply take σ1, . . . , σk−1 ∼ {0, 1}`
and σk := s⊕ σ1 ⊕ · · · ⊕ σk−1.

Another easy example is the case t = 1. In this case, the security property is vacuous (since it
refers to collections of 0 shares), and the correctness property says that any one share σi should be
sufficient to recover the secret. So, we can just set σi = s for all i!

Things get interesting when 1 < t < k. For example, one can imagine wanting a 2-out-of-k
secret-sharing scheme, so that any two parties can reconstruct the secret, but no one party can.
Or, for odd k, one can imagine a (k + 1)/2-out-of-k secret-sharing scheme, so that a majority is
necessary to reconstruct the secret. But, it is not at all clear how to do this.

2 An apparently unrelated discussion about polynomials modulo
primes

Now, let’s talk about something seemingly unrelated. Let g(x) := c0 + c1x+ · · ·+ cdx
d mod q be a

polynomial of degree d modulo q, with coefficients ci ∈ Zq, where q is prime and cd 6= 0 mod q.
The roots of g are the elements a ∈ Zq such that g(a) = 0 mod q. For example, 2 is a root of

the degree-three polynomial g(x) = x3 + 2x2 − 1 mod 3 because 23 + 2 · 22 − 1 = 15 = 0 mod 3.
We will need the following well-known theorem. Since I happen to know a beautiful proof, we’ll

prove it :). (Notice that it is important in the theorem that cd 6= 0, since the zero polynomial
g(x) = 0 has q roots modulo q. But, by definition, the zero polynomial does not have non-negative
degree—sometimes we actually define its degree to be −∞.)

Theorem 2.1. If g is a polynomial with degree d ≥ 0 modulo a prime q, then g has at most d
roots.

Our proof will use the following claim. In fact, the claim works for composite q as well (though
the theorem itself is false for composite q, as the example 2x2 + 2x mod 4 shows).

2



Claim 2.2. If a ∈ Zq is a root of a polynomial g modulo q with degree d ≥ 1, then g(x) =
(x− a)g′(x) mod q, where g′(x) mod q is a (non-zero) polynomial with degree d− 1.

Proof. Let h(x) := g(x)− g(a). Since g(a) = 0 mod q by definition, we must have g(x) = h(x) mod
q. But,

h(x) = cd(x
d − ad) + cd−1(x

d−1 − ad−1) + · · ·+ c1(x− a) .

Now, notice that xr − ar = (x− a)(xr−1 + axr−2 + a2xr−3 + · · ·+ ar−2x+ ar−1). Define pr,a(x) :=
xr−1 + axr−2 + a2xr−3 + · · ·+ ar−2x+ ar−1. It follows that

h(x) = cd(x− a)pd,a(x) + cd−1(x− a)pd−1,a(x) + · · ·+ c2(x− a)p2,a(x) + c1(x− a)

= (x− a) · (cdpd,a(x) + cd−1pd−1,a(x) + · · ·+ c2p2,a(x) + c1) .

One can then easily check that the polynomial g′(x) := cdpd,a(x) + · · ·+ c2p2,a(x) + c1 has degree
d− 1, and since g(x) = h(x) mod q, we can write g(x) = (x− a)g′(x) mod q, as needed.

Proof of Theorem 2.1. We can now prove the theorem by induction on the degree d. For our base
case, notice that the theorem is trivially true for degree-zero polynomials, since by definition these
are non-zero constant functions (e.g., g(x) = 2 mod 3), which can never be zero. (If taking the
base case to be the constant functions makes you uncomfortable, you can instead use the degree
one polynomials as the base case.)

Now, assume for induction that any polynomial g′(x) mod q with degree d−1 has at most d−1
roots, and let g(x) mod q be a polynomial with degree d. If g has no roots, then we are done.
Otherwise, let a ∈ Zq be a root of g(x) mod q. By Claim 2.2, we can write

g(x) = (x− a)g′(x) mod q ,

where g′(x) has degree d− 1.
Suppose that a′ ∈ Zq with a 6= a′ mod q is some other root of g(x), so that g(x) = (a′ −

a)g′(a′) mod q. Since q is prime and a − a′ 6= 0 mod q, we must have g′(a′) = 0 mod q. In other
words, every root of g is either a or one of the at most d− 1 roots of g′. (a could also be a root of
g′, which is fine.) So, g has at most d roots, as needed.

Corollary 2.3. Let g(x) and h(x) be two polynomials modulo q, each with degree at most d.
Suppose that g(a1) = h(a1) mod q, . . . , g(ad+1) = h(ad+1) mod q for distinct a1, . . . , ad+1 ∈ Zq.
Then, g(x) = h(x) mod q.

Proof. Notice that p(x) := g(x)−h(x) mod q is a polynomial with degree at most d, with a1, . . . , ad+1 ∈
Zq as distinct roots. This is a contradiction unless p is the zero polynomial (i.e. p(x) = 0 mod q
for all x), i.e., unless g = h mod q.

The result that we will actually use directly is the following. This tells us that any d + 1
equations of the form g(a1) = b1 mod q, . . . , g(ad+1) = bd+1 mod q for distinct ai ∈ Zq and any
bi ∈ Zq determine a unique polynomial g with degree at most d modulo q and that this polynomial
can be found efficiently, given the ai, bi.

The algorithm for computing this polynomial is called Lagrange interpolation. (Notice that it
is crucial that the ai are distinct. The result is of course false if, e.g., a1 = a2 = · · · = ad+1.)

3



Theorem 2.4. For any prime q, any distinct a1, . . . , ad+1 ∈ Zq, and any (not necessarily distinct)
b1, . . . , bd+1 ∈ Zq, there exists a unique polynomial g(x) mod q with degree at most d such that
g(ai) = bi mod q for all i.

Furthermore, there is an efficient algorithm that takes as input q and (a1, b1), . . . , (ad+1, bd+1)
and outputs g.

Proof. Corollary 2.3 already tells us that, if such a g exists, it must be unique. So, we only need to
show that such a g does in fact exist, and how to find such a g efficiently. We do so via Lagrange
interpolation.

Specifically, suppose that we have polynomials p1, . . . , pd+1 such that (1) pi(ai) = 1 mod q for
all i; and (2) pi(aj) = 0 mod q for all i 6= j. Then, clearly, we can take g(x) = b1p1(x) + b2p2(x) +
· · ·+ bd+1pd+1(x) mod q, and we will have g(ai) = bi as needed.

It remains to show that these polynomials pi exist. Indeed, let hi(x) :=
∏
j 6=i(x − aj) mod q.

By definition, hi(aj) = 0 for all i 6= j, and hi(ai) =
∏
j 6=i(ai − aj) mod q. Since q is prime and the

ai are distinct, we must have that hi(ai) is non-zero, and therefore there must exist some inverse
αi := hi(ai)

−1 mod q. Then, we can take pi(x) := αi ·hi(x) mod q, which clearly satisfies the desired
properties.

(You might have noticed that the above proof is very similar to the proof of the Chinese
Remainder Theorem. This is not a coincidence. It turns out that both theorems are really special
cases of a more general theorem—the Chinese Remainder Theorem for integral domains. To see the
connection, notice that the equation g(ai) = bi is equivalent to the equation g(x) = bi mod (x−ai).)

3 Shamir’s secret-sharing scheme

We will now see Adi Shamir’s beautiful t-out-of-k secret-sharing scheme [Sha79], which is very
natural and is used in many different constructions in cryptography and computer science more
broadly. It works as follows for any prime q > k and for secrets s ∈ Zq.

• Share(s): Sample a uniformly random polynomial h over Zq with degree at most d = t − 1
and coefficients in Zq satisfying h(0) = s, i.e., h(x) := s+ h1x+ h2x

2 + · · ·+ ht−1x
t−1, where

hi ∼ Zq. Set σi := h(i) mod q for i = 1, . . . , k.1

• Reconstruct((i1, σ1 := h(i1) mod q), . . . , (it, σt := h(it) mod q): Use Theorem 2.4 to find the
unique polynomial h with degree at most t− 1 satisfying h(ij) = σj mod q for all j. Output
h(0) (i.e., the constant term of the polynomial).

It is immediate from Theorem 2.1 that this scheme is correct and can be implemented efficiently.
But, why is it secure?

Well, for fixed distinct i1, . . . , it−1 ∈ Zq with ij 6= 0 and σ1, . . . , σt−1, consider the set P ∗ :=
{h : deg(h) ≤ t− 1, h(i1) = σ1 mod q, . . . , h(it) = σt mod q} of polynomials with degree at most
t−1 and with h(ij) = σj mod q for all j. Then, we claim that for every s ∈ Zq there exists a unique

1It is not strictly necessary to set the secret to be the constant term h(0). One could instead, for example, set
the secret to be the coefficient of xt−1, or one could set the secret to be, say, h(k + 1). This is simply a particularly
convenient choice.

4



h∗ ∈ P ∗ such that h∗(0) = s mod q. Notice that this implies the result, since it implies that for
any s ∈ Zq,

Pr
(σ′1,...,σ

′
k)←Share(s)

[∀j ∈ {1, . . . , t− 1}, σ′ij = σj ] = 1/qt−1 ,

independent of the secret s.
Indeed, Theorem 2.1 immediately implies that there is a unique h∗ ∈ P ∗ such that h∗(0) =

s mod q. So, our scheme is secure (and, we have elegantly proven both correctness and security
using the same theorem).

3.1 The Vandermonde matrix

Shamir’s secret-sharing scheme can be written succinctly in matrix notation. In particular, let

Ak,t :=


1 1 1 · · · 1
1 2 4 · · · 2t−1 mod q
1 3 9 · · · 3t−1 mod q
...

...
...

. . .
...

1 k mod q k2 mod q · · · kt−1 mod q

 ∈ Zk×tq .

Matrices of this form are called Vandermonde matrices (or sometimes just “the Vandermonde
matrix”). If we view the secret s ∈ Zq and the randomness h1, . . . , ht ∈ Zq sampled by the Share
algorithm as a vector

h :=


s
h1
h2
...

ht−1

 ∈ Ztq ,

and similarly view the resulting shares

r :=


σ1
σ2
...
σk

 ∈ Zkq

as a vector, then we see that
r = Ak,th mod q .

This in particular means that Shamir’s scheme is linear. So, if we have shares σ0,1, . . . , σ0,k ∈ Zq
of some secret s0 and shares σ1,1, . . . , σ1,k ∈ Zq, then the shares σ+,1 := σ0,1+σ1,1 mod q, . . . , σ+,k :=
σ0,k + σ1,k mod q are shares of the secret s+ := s0 + s1 mod q. This can be very useful for applica-
tions.

In fact, any full-rank matrix A ∈ Zk×tq yields a linear secret-sharing scheme. However, Shamir’s
scheme was discovered first and is arguably the most elegant such scheme. (It also has additional
properties that make it extremely useful, though we will likely not see those in this course.)

5



4 Secret sharing for more general access structures

The notion of t-out-of-k secret sharing that we studied above is also known as threshold secret
sharing, since a group of parties can recover the secret if and only if the size of the group is
larger than some threshold t. One can generalize threshold secret sharing to a much larger class of
primitives. For example, suppose that s is the code necessary to launch a nuclear missile. Suppose
we want to share it between, say, the President, the Vice President, all of the members of Congress,
and the Secretary of Defense in such a way that

1. the President can reconstruct s if she is joined by either (1) the Vice President; (2) half the
members of Congress; or (3) the Secretary of Defense; and

2. the Vice President, all the members of Congress, and the Secretary of Defense can together
reconstruct s; but

3. no smaller group can “learn any information about s.”

This scheme cannot be described as a t-out-of-k secret-sharing scheme. However, we can still build
it!

To define this formally, we need to first define an access structure. An access structure S is
simply a collection of sets of the parties, which specifies which subsets of the parties can recover
the message. Intuitively, any set of parties in the access structure S should be able to recover the
secret, and any set that is not in S should be unable to learn anything about S. Here is the formal
definition.

Definition 4.1. For any access structure S (consisting of subsets of parties), a S-secret-sharing
scheme with secret space M is a pair of algorithms Share and Reconstruct with the following prop-
erties.

1. (Correctness.) For any secret s ∈M and any T = {i1, . . . , i`} ∈ S,

Pr
(σ1,...,σk)←Share(s)

[Reconstruct((i1, σi1), . . . , (i`, σi`)) = s] = 1 .

(In other words, if the Reconstruct algorithm is given any shares corresponding to a set in the
access structure, it can always reconstruct the secret.)

2. (Security.) For any two secrets s, s′ ∈ S and any T = {i1, . . . , i`} /∈ S, the dis-
tributions (σi1 , . . . , σi`) and (σ′i1 , . . . , σ

′
i`

) are identical, where (σ1, . . . , σk) ← Share(s) and
(σ′1, . . . , σ

′
k)← Share(s′). Equivalently, for any β1, . . . , β`,

Pr
(σ1,...,σk)←Share(s)

[∀j, σij = βj ] = Pr
(σ′1,...,σ

′
k)←Share(s′)

[∀j, σ′ij = βj ] .

(In other words, the joint distribution of any shares corresponding to a set not in the access
structure are independent of the secret s.)

Notice, however, that some access structures S are clearly impossible to achieve. E.g., if T ∈ S
and T ⊆ T ′, then it must be the case that T ′ ∈ S as well. Otherwise, the above definition would
say that the shares in T are sufficient to recover the secret, but the larger collection of shares in
T ′ are completely independent of the secret. This cannot possibly be true. E.g., it cannot possibly

6



be the case that the President can recover the codes when she is joined by half the members of
Congress but that she is unable to do so when she is joined by all members of Congress.

We call an access structure S monotone if whenever T ∈ S, we also have T ′ ∈ S for any
superset T ′ of T . Perhaps surprisingly, any monotone access structure can be achieved. However,
we pay a lot in efficiency. In particular, some access structures seem to require shares whose
size is exponential in k. (Notice that Shamir’s secret-sharing scheme only required shares of size
O(log k).) It is still an open problem to determine the optimal share size of a S-secret-sharing
scheme for arbitrary monotone S.

Theorem 4.2. For any monotone access structure S, there exists a S-secret-sharing scheme.

We will not see the proof of the above theorem in this course, but it is actually not too difficult.
It follows from these two results.

1. Given a S0-secret-sharing scheme for an access and a S ′1-secret-sharing-scheme, it is possible
to construct a SAND-secret-sharing scheme and a SOR-secret-sharing scheme, where SAND :=
S0 ∩ S1 and SOR := S0 ∪ S1.

2. Any monotone access structure can be constructed by taking intersections and unions of
“simple” access structure (e.g., access structures consisting of all sets containing one party).

References

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. 4

7


	Secret Sharing
	An apparently unrelated discussion about polynomials modulo primes
	Shamir's secret-sharing scheme
	The Vandermonde matrix

	Secret sharing for more general access structures

