
Zero-knowledge proofs for all of NP

Noah Stephens-Davidowitz

June 9, 2023

1 Recap

In the previous lecture, we defined zero-knowledge proofs, which are interactive protocols that can
be used by a prover P to convince a skeptical verifier V of a certain fact without revealing any
other information. Specifically, for some language L ⊂ {0, 1}∗, the (possibly unbounded) prover P
wants to convince the computationally bounded verifier V that some string x ∈ {0, 1}∗ is in the
language L.

However, our definition from the previous lecture was slightly too strong in that we required
perfect zero knowledge. That is, there had to exist a simulator whose output distribution was
identical to the distribution of the view of V∗ in a run of the protocol with P. In order to show
examples of problems with such protocols, we had to reach for some slightly esoteric problems
because, well, not many problems are known to have such protocols (besides problems that are in
P, which have trivial perfect zero-knowledge protocols).

There is a much more general type of zero-knowledge protocol called statistical zero knowledge
in which the two distributions are not required to be exactly the same, but may instead have some
negligible statistical distance between them. The class of problems with such protocols is known
as SZK and is very well studied.

However, since this is a cryptography class, we skip right to computational zero-knowledge
proofs, which are typically just called zero-knowledge proofs (because they’re the kind that people
are most interested in). Here is the formal definition, first for honest verifiers, and then for malicious
verifiers. I will work with both definitions, but I will only really expect you to be comfortable with
the first definition.

Definition 1.1 (Honest-verifier zero knowledge). A protocol (P,V) is an honest-verifier zero-
knowledge protocol for a language L if the verifier V is efficient and the protocol satisfies the
following properties.

• Completeness: For every x ∈ L, 〈P,V〉(x) = 1 with probability 1.

• Soundness: For every x /∈ L and every (unbounded) prover P∗,

Pr[〈P∗,V〉(x) = 1]] ≤ 1/2 .

• Zero Knowledge: There exists a PPT simulator S such that for any PPT adversary A,
there exists negligible ε(n), such that

Pr[A(x, S(x)) = 1]− Pr[A(x, viewV(P,V)(x)) = 1] ≤ ε(|x|) ,

1



for every x ∈ L, where we use the notation viewV(P,V)(x) to represent the view of V in a run

of the protocol with P on input x. (A does not actually need to take x as input, since x is
part of the view of V. But, it seems wise to emphasize that A knows x.)

Definition 1.2 (Zero knowledge against malicious verifiers). A protocol (P,V) is a zero-knowledge
protocol for a language L if the verifier V is efficient and the protocol satisfies the following prop-
erties.

• Completeness: For every x ∈ L, 〈P,V〉(x) = 1 with probability 1.

• Soundness: For every x /∈ L and every (unbounded) prover P∗,

Pr[〈P∗,V〉(x) = 1]] ≤ 1/2 .

• Zero Knowledge: There exists a PPT simulator S such that for every PPT verifier V∗
and PPT adversary A, there exists negligible ε(n), such that

Pr[A(x, SV
∗
(x)) = 1]− Pr[A(x, viewV

∗

(P,V∗)(x)) = 1] ≤ ε(|x|) ,

for every x ∈ L, where we use the notation viewV
∗

(P,V∗)(x) to represent the view of V∗ in a run
of the protocol with P on input x.

Intuitively, the zero-knowledge property says that interaction with P is “useless.” For example,
suppose z is the output of some one-way function, and V∗ would like to use P to find a preimage
of z. The zero-knowledge property rules this out. More generally, the zero-knowledge property
says that “if a PPT algorithm can solve some computational problem by interacting with P, then
a PPT algorithm can solve the same problem without interacting with P.”

This is certainly a weaker notion than perfect zero knowledge, but weakening our definition is
necessary for us to prove the main result of this lecture, which is truly magical. We will show how to
construct zero-knowledge proofs for all of NP! (Actually, every language in IP has a zero-knowledge
proof! But, we will not show this.)

1.1 Some new notation

The definitions of zero knowledge above are rather cumbersome because there are in some sense
two adversaries: V∗ and A. So, we’re quantifying over a lot of stuff: a simulator S, PPT malicious
verifiers V∗, adversaries A, ε, and x ∈ L. We therefore introduce some new notation that is typically
used in this setting (and in fact in many other settings).

Intuitively, for two random variables X and Y , we write

X ≈c Y

if “X is computationally indistinguishable from Y ”—that is, if no polynomial-time adversary can
distinguish X from Y with non-negligible advantage.

However, if you think about it a bit, you might realize that the above intuitive definition doesn’t
actually make sense, since it is not clear what the security parameter is! Formally, we should actually
define two families of distributions X1, X2, X3, . . . , and Y1, Y2, Y3, . . . ,, one distribution for every
security parameter. And then we should write

Xn ≈c Yn .

2



to mean that for every PPT A there exists negligible ε(n) such that

Pr[A(Xn) = 1]− Pr[A(Yn) = 1] ≤ ε(n) .

This is the true formal definition of computational indistinguishability ≈c.
However, we are at the point now where we’re pretty happy to use slightly imprecise notation

if there is relatively little risk of confusion. So, we will often write things X ≈c Y , when we really
mean something like the above—i.e., we don’t specifically mention the security parameter and we
don’t specifically define the families of distributions X1, X2, X3, . . . and Y1, Y2, Y3, . . ., as long as
we know that we could achieve this level of formality if we needed to.

For example, we might write the pseudorandomness property of a PRG as simply

G(x) ≈c U ,

where U is the uniform distribution on |G(x)| bits. Notice that this is quite dangerous because we
have not specified the security parameter or the distribution of x. Really, what we should do is
define Ui to be the uniform distribution on i bits and to write something like

G(Un) ≈c Um(n) ,

where m is the stretch of our PRG. But, again, this is cumbersome.
Anyway, given this notation, we can write the zero-knowledge property above quite succinctly.

Honest-verifier zero knowledge simply states that there exists a PPT simulator S such that

S(x) ≈c viewV(P,V)(x)

for all x ∈ L. Similarly, zero knowledge against malicious verifiers says that there exists a PPT
simulator S such that for every PPT V∗,

SV
∗
(x) ≈c viewV

∗

(P,V∗)(x)

for all x ∈ L.
Again, this notation is dangerous, since it is no longer clear what the security parameter is.

However, we often strongly prefer it.

2 Commitment

In lecture 4, we briefly discussed commitment. A commitment scheme is sort of analogous to a box
with a lock and key. I “commit” to something (say, a bit) by placing it in the box, locking the box,
and handing the box to you. Later, I can open the box for you and reveal what was committed. If
our locked box is secure, it should guarantee two things. First, this scheme should be binding. I.e.,
I should not be able to put one thing in the box and later reveal something else. (Magicians really
like to violate the binding property of locked boxes. . . ) Second, the scheme should be hiding. I.e.,
you should not be able to guess the contents of the box unless I reveal them to you.

Here is the formal definition.

Definition 2.1. A commitment scheme is a PPT algorithm Com : {0, 1}` × {0, 1}∗ → {0, 1}∗
satisfying the following properties.

3



• Binding: For any r0, r1 ∈ {0, 1}∗ and distinct m0,m1 ∈ {0, 1}`, Com(m0, r0) 6= Com(m1, r1).

• Hiding: For any PPT adversary A, there exists negligible ε(n) such that for all m0,m1 ∈
{0, 1}`

Pr
r∼{0,1}n

[A(1n,Com(m1, r)) = 1]− Pr
r∼{0,1}n

[A(1n,Com(m0, r)) = 1] ≤ ε(n)

for all n ∈ N.

As we saw in lecture five, we can build a commitment scheme for a single bit ` = 1 from any
one-way permutation (or just an injective one-way function) f with a hardcore predicate P by
taking Com(b, r) := (f(r), b ⊕ P (r)). We can then extend this to a commitment for larger ` by
concatenation. (In fact, it is possible to build a more complicated version of a commitment scheme
from any one-way function, though we will not see this in this course.)

When we talk about commitment schemes, we use some useful shorthand. We say that “P
commits to x” if P samples a uniformly random string r ∈ {0, 1}n and sends the message Com(x, r)
to the verifier V. We say that “P opens this commitment” or “P reveals x” if it sends (x, r) to V
after having committed to x.

3 Zero knowledge for all of NP

In this section, we prove the following surprising theorem, due to Goldreich, Micali, and Wigder-
son [GMW91].

Theorem 3.1 ([GMW91]). Every language in NP has a zero-knowledge proof.

To show that there exists a zero-knowledge proof for every language in NP, it suffices to show a
zero-knowledge proof for a single NP-complete language. Then, to obtain a proof for any language
L in NP, we can first reduce the statement x ∈ L to a statement that x′ ∈ L′ for our NP-complete
language L′. We can then prove the latter statement.

In fact, we will show two such protocols: one for 3-Colorability and one for Hamiltonian Cycle.
(We present two because the 3-Colorability protocol is too beautiful to omit, but the Hamiltonian
Cycle protocol is a bit more “typical,” in the sense that many zero-knowledge proofs look rather
similar to the Hamiltonian Cycle protocol.)

We also note that both protocols presented below have efficient provers. That is, if L is an NP
language and w is a witness that x ∈ L, then there is a probabilistic polynomial-time prover P that
takes as input (x,w) and interacts with a PPT verifier V to prove that x ∈ L in zero knowledge.
So, for example, if I knew a proof to the Riemann Hypothesis (I don’t), then I could convince you
of its truth without revealing the proof (or any other information) to you! More practically, I might
use a zero-knowledge proof to convince you that I have behaved honestly in some more complicated
protocol (say, that a certain value y is actually the output f(x) of some one-way function, without
revealing x).

3.1 3-Colorability

Recall that a graph G is 3-colorable if there exists some map φ : V (G)→ {0, 1, 2} (i.e., a coloring)
such that for every edge {u, v} ∈ E(G), φ(u) 6= φ(v). In words, a graph is 3-colorable if you can

4



Figure 1: A 3-coloring. CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=
614041.

label each vertex with one of three colors (e.g., 1 = red, 2 = green, and 3 = blue) such that no
neighboring vertices have the same color. Figure 1 shows a simple example a graph with a 3-coloring
from Wikipedia.

The problem of determining whether a graph is 3-colorable is NP-complete. So, if we can show
a zero-knowledge protocol for three-colorability, then we get a zero-knowledge protocol for every
problem in NP, which works by first reducing to three-colorability and then running the proof of
3-colorability.

First, some notation. We will need the concept of a “random permutation of a coloring φ.” In
particular, for a coloring φ, we write Rφ := {φ′ = π ◦ φ : π ∈ S3} for the set of all colorings φ′

obtained by taking a permutation π of {0, 1, 2} and setting φ′(v) = π(φ(v)). In other words, φ′ is
the same as φ with the colors “renamed.” In particular, φ′ is a valid three-coloring if and only if
φ is a valid three-coloring. (This is perhaps overly fancy notation, since this is just a set with six
elements in it.)

The figure below shows the protocol. (When you study these protocols, it is often best to
first ignore the many “checks” that the verifier must perform, since these are rather tedious and
typically pretty obvious once you understand what the protocol is doing.) In words, P commits to
a random permutation φ′ of φ, V selects a random edge {u, v} ∈ E(G), and asks P to reveal the
colors φ′(u), φ′(v) of the vertices of that edge. V then checks that the commitments are valid and
that φ′(u) 6= φ′(v) and accepts if these two things hold.

5

https://commons.wikimedia.org/w/index.php?curid=614041
https://commons.wikimedia.org/w/index.php?curid=614041


Prover Verifier
INPUT: G,φ INPUT: G

φ′ ∼ Rφ
FOR v ∈ V (G),

rv ∼ {0, 1}|V (G)|

cv := Com(φ′(v), rv)
(cv)v∈V (G)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{u, v} ∼ E(G)
u, v←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ru, rv, φ
′(u), φ′(v)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
check that φ′(u), φ′(v) ∈ {0, 1, 2}
check that cu = Com(φ′(u), ru)
check that cv = Com(φ′(v), rv)
check that φ′(u) 6= φ′(v)
output 1 if and only if all checks pass

Let’s first check that this protocol is complete and sound. For completeness, we simply notice
that if φ is a valid 3-coloring and P behaves honestly, then φ′ is a valid coloring as well, and we
must have φ′(u) 6= φ′(v).

For soundness, we rely on the binding property of the commitment scheme. Specifically, for each
v, there is at most one color φ′(v) ∈ {0, 1, 2} such that Com(φ′(v), r′v) = cv for some r′v ∈ {0, 1}n.
If G is not three-colorable, then there is at least one edge {u, v} with φ′(v) = φ′(u) (or one of the
commitments cu, cv might not open to a valid color). Therefore, with probability at least 1/|E(G)|,
the prover will fail to convince the verifier in this case.

(Of course, a soundness error of 1 − 1/|E(G)| is not very reassuring—and it does not even
formally satisfy our definition, which required soundness error of 1/2—but we can amplify this by
repeating the protocol many times. E.g., after |E(G)| independent runs of the protocol, the sound-
ness error is less than 1/2. As we discussed earlier, we can do this without losing the completeness
or zero-knowledge properties. But, see Section 4 for some discussion of subtleties there.)

The hard part is proving that the protocol is zero knowledge. Intuitively, the protocol is zero
knowledge because, no matter what a malicious verifier V∗ does, all it sees is an opening to a
commitment of two random different colors. Of course, the verifier can generate a commitment to
two random different colors itself, so intuitively, “it does not learn anything.”

Let’s first prove honest-verifier zero-knowledge, which is not too difficult. Then we will prove
zero knowledge against possibly malicious verifiers.

Theorem 3.2. The above protocol for three-colorability is honest-verifier zero-knowledge.

Proof. Our simulator will formalize our intuition above that “the verifier only sees two randomly
colored edges.” Specifically, on input a graph G, our simulator S will sample a uniformly random
edge {u, v} ∼ E(G). It sets φ′(u) and φ′(v) to be two uniformly random colors. For all w ∈ V (G)
with w /∈ {u, v}, it sets φ′(w) = 0. (This choice is arbitrary. Any value for φ′(w) is fine.) Then, it
outputs (as the verifier’s simulated view) the commitments cw to φ′(w) for all w ∈ V (G), the edge
u, v, and the openings ru, rv, φ

′(u), φ′(v).

6



It is clear that the simulator runs in polynomial time. Intuitively, the output of the simulator is
indistinguishable from the view of V in a true run of the protocol because the only difference is the
commitments. And, since the commitment is hiding, the two views should be indistinguishable.

To prove this, it is convenient to define a “hybrid simulator” S′. S′ takes as input both G
and a valid coloring φ—the same coloring φ used by P. (Crucially, we are only using S′ for our
analysis of S. It is of course very important that our simulator S only takes G as input. S′ is just a
thought experiment to help with the proof that S works.) It then samples a uniformly random edge
{u, v} ∈ E(G), and samples two uniformly random different colors φ′(u) and φ′(v). It then takes φ′

to be the unique coloring in Rφ with this property—i.e., the unique renaming of the coloring φ with
these values of φ′(u) and φ′(v). Then, it outputs (as the verifier’s simulated view) the commitments
cw to φ′(w) for all w ∈ V (G), the edge u, v, and the openings openings ru, rv, φ

′(u), φ′(v).
A quick check shows that S′(x, φ) is distributed identically to the view of V(G) in a true

interaction with the prover P(G,φ).
So, it remains to show that

S(x) ≈c S′(x, φ) .

To do this, we rely on the hiding property of the commitment scheme. Specifically, by construc-
tion, S(x) and S′(x, φ) only differ in the unopened commitments cw for w /∈ {u, v}. Call these
commitments (cw)w/∈{u,v} and (c′w)w/∈{u,v}. By a hybrid argument, which works by replacing the
commitments (cw) to (c′w) one at a time), we see that (c′w)w/∈{u,v} ≈c (c′w)w/∈{u,v}, and the result
follows.

We now prove that the protocol is actually zero knowledge even against possibly malicious
verifiers. (Again, for the purposes of this course, I’ll be satisfied if you understand the above
proof.)

Theorem 3.3. The above protocol for three-colorability is zero-knowledge (even against possibly
malicious verifiers.

Proof. Given some (possibly malicious) PPT verifier V∗, we construct a PPT simulator SV
∗

as
follows. On input G, the simulator first samples a uniformly random edge {u, v} ∈ E(G). Let
φ′(w) := 0 for all vertices w /∈ {u, v}, and let φ′(u) ∈ {0, 1, 2} and φ′(v) ∈ {0, 1, 2} be uniformly
random subject to the constraint that φ′(u) 6= φ′(v). S then samples rw ∼ {0, 1}|V (G)| for each
w ∈ V (G), sets cw := Com(φ′(w), rw), and passes all of the cw to V∗ (together with G).
V∗ responds with some edge {u′, v′} ∈ E(G). If {u, v} 6= {u′, v′}, then S simply starts the

process over again. Otherwise, S reveals ru, rv, φ
′(u), and φ′(v) to V∗.1

So, suppose that G has a valid three-coloring φ. We need to show that (1) the view of V∗ in a
completed interaction with S on input G is indistinguishable from its view in its interaction with
P on input (G,φ); and (2) that S runs in expected polynomial time. Neither fact is obvious, and
both rely on the hiding property of the commitment scheme.

Imagine replacing the simulator S with a new simulator S̃ that has access to φ and behaves
as follows. First, S̃ samples {u, v} ∈ E(G) and φ′(u), φ′(v) ∈ {0, 1, 2} as above. Then, it sets

1Formally, S is meant to output a view of V∗. I.e., S should output the coins used by V∗ together with (cw)w∈V (G),
{u, v}, ru, rv, φ′(u), and φ′(v). And formally we must argue that this view is indistinguishable from the view seen
by V∗ in its interaction with P. In practice, we almost always leave out the actual step in which S outputs this view,
and simply argue that the view seen by V∗ in a completed interaction with S is indistinguishable from its view in an
interaction with P. We also typically ignore corner cases. E.g., we don’t bother to explain how the simulator behaves
if, say, V∗ sends an invalid message.

7



φ̃ ∈ Rφ to be the unique coloring in Rφ with φ̃(u) = φ′(u) and φ̃(v) = φ′(v). (Notice that there

is in fact one coloring in Rφ that satisfies this.) It then sends commitments corresponding to φ̃ to
V∗ and continues the protocol just like S does—receiving a response {u′, v′} ∈ E(G), restarting if
{u′, v′} 6= {u, v}, and otherwise opening the commitments to φ′(u) and φ′(v).

Let’s first see that S̃ produces the appropriate view and runs in expected polynomial time. (Of
course, S̃ is not itself a valid simulator, because it receives a coloring φ as input. So, we will have
to compare S and S̃ to finish the proof.) To see this, first notice that the random variable {u, v}
is actually independent of the coloring φ̃ and is therefore independent of the first message sent by
S̃. Therefore, regardless of how V∗ computes {u′, v′}, we have {u′, v′} = {u, v} with probability
exactly 1/|E(G)|, independent of {u′, v′}. (This step was quite delicate. E.g., notice that these
random variables are not independent for S, since V∗ could choose {u, v} in a way that depends
on the commitments sent by S, and the commitments sent by S do depend on {u, v}.) It follows
that S̃ will complete the protocol with probability exactly 1/|E(G)| each time that it calls V∗,
which in particular means that it runs in expected polynomial time. Furthermore, since {u, v} is
independent of {u′, v′}, it follows that the view of V∗ in a completed interaction with S̃ is exactly
the same as its view in an honest interaction with P.

It remains to show that the behavior of S is indistinguishable from the behavior of S̃. By a
hybrid argument, the commitments sent by S are indistinguishable from the commitments sent by
S̃. I.e., we can replace the first message sent by S by the first message sent by S̃. Finally, we notice
that, after replacing the first message sent by S with the first message sent by S̃, the two simulators
behave identically. Therefore, the probability that S finishes the protocol on each try must be at
most negligibly far from 1/|E(G)|, so that its running time is also expected polynomial. And, the
view of V∗ in a completed interaction with S is indistinguishable from its view in a completed
interaction with S̃. Since the latter view was exactly the same as the view of V∗ in an honest
interaction with P, the protocol is in fact zero knowledge.2

3.2 Hamiltonian Cycle

Recall that a Hamiltonian cycle in a graph is a cycle that includes each vertex exactly once. Figure 2
shows a nice example from Wikipedia. The Hamiltonian Cycle problem is the computational
problem that asks us to decide whether a given graph has a Hamiltonian cycle C = (e1, . . . , e|V (G)|),
and it is known to be NP-complete.

We present a zero-knowledge proof for Hamiltonian Cycle as follows. In words, the protocol
works as follows. The prover P samples a uniformly random permutation π∗ ∼ ΠG from the set of
permutations ΠG := {π : V (G) → V (G)} of the vertices of the graph G. It then commits to the
edges of the permuted graph in a random order. I.e., for each edge e := {u, v} ∈ E(G), it commits
to π∗(e) := {π∗(u), π∗(v)}. The verifier V then samples a uniformly random bit b ∼ {0, 1} and
sends it to P. If b = 0, then P responds by opening the commitments to {π∗(u), π∗(v)} for each
{u, v} ∈ C. I.e., P shows that the committed graph has a Hamiltonian cycle. If b = 1, P opens all
commitments and reveals π∗ as well. I.e., P shows that the committed graph is a valid permutation

2I have cheated quite a bit here, since in order for the hybrid argument to work, the distinguisher needs access to
the graph coloring—which is of course hard to compute. One can handle this via non-uniformity. I.e., one says that
if the proof is false, then for some verifier V∗ and infinitely many n, there must be some graph G with n vertices with
coloring φ for which one can distinguish the simulated view from a real view. One can then hard code that graph G
and φ into a distinguisher for the commitment scheme to derive a contradiction. To get a uniform reduction takes
significantly more work.

8



Figure 2: A Hamiltonian cycle. (By Wikipedia user Patrick24 - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=5461910.)

of the original graph.

Prover Verifier
INPUT: G,C INPUT: G

π∗ ∼ ΠG

FOR e ∈ E(G),
re ∼ {0, 1}|V (G)|

ce := Com(π∗(e), re)
(ce)e∈E(G) (in random order)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b ∼ {0, 1}

b←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
IF b = 0

(π∗(e), re)e∈C (in random order)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

check that openings are valid
check that π∗(e) form a cycle

IF b = 1
(π∗(e), re)e∈E(G), π

∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
check that openings are valid
check that openings match π∗(E)

The proof that this is a zero-knowledge protocol is essentially the same as the proof for 3-
Colorability. In particular, completeness and soundness are relatively straightforward.

To prove zero knowledge, we construct a simulator S for each malicious verifier V∗ as follows.
S samples a uniformly random bit b ∼ {0, 1}. If b = 0, S commits to the edges of a uniformly

9

https://commons.wikimedia.org/w/index.php?curid=5461910


random Hamiltonian cycle C∗ on V (G) together with |E(G)| − |V (G)| additional random edges. If
b = 1, S commits to a uniformly random permutation of the edges of G. In response V∗ sends a bit
b′. If b′ 6= b, then S simply restarts the process. Otherwise, if b = b′ = 0, S opens the commitment
to C∗ (but not to the remaining edges). If b = b′ = 1, S opens all commitments and sends the
permutation to V∗.

We leave it as an exercise to prove that S is in fact a valid simulator.

4 Bonus content: On auxiliary input and zero knowledge under
repetition

The two protocols that we have shown have soundness error that is quite large—1 − 1/|E| and
1/2 respectively. In practice, we would like to repeat the protocol polynomially many times (in
sequence, not in parallel) in order to lower the soundness error. This does work, but to make the
proof go through, one must be careful.

The standard way to handle this is to introduce a notion of zero knowledge with auxiliary input.
This modifies the definition of zero knowledge so that the malicious verifier and the simulator
each receive as input an additional string z ∈ {0, 1}∗, with the only restriction on z being that
|z| ≤ poly(|x|). This is called the auxiliary input. The protocol is zero knowledge with auxiliary
input if for any such string z, SV

∗
(x, z) is indistinguishable from view〈V∗(x, z),P(x,w)〉.

Intuitively, this definition of zero knowledge with auxiliary input captures the notion that “no
matter what V∗ knows at the start of the protocol, it learns nothing after interacting with P.”
Perhaps a better name for it would therefore be “prior information.” E.g., the auxiliary input
might be a partial coloring of the input graph G. A good zero knowledge protocol should not
reveal anything even to an adversary who happens to know such a partial coloring. So, this is
really the right definition of zero knowledge. In this course, we are simply ignoring the auxiliary
input to save ourselves some ink.

The auxiliary input definition is also far more robust. In particular, it is stable under sequential
repetition. So, we can take a protocol that is zero knowledge with auxiliary input, repeat it many
times in sequence, and still get a protocol that is zero knowledge with auxiliary input. To prove
this, in the ith run of the protocol, we consider the view from the previous i−1 runs of the protocol
to be auxiliary input.

It is straightforward to see that the above protocols are still zero knowledge with auxiliary input.
But, one can create contrived examples in which this is not the case. For example, we could add
a first message to our 3-coloring protocol, sent by the verifier, which the prover P ignores unless
the first message happens to be a commitment to a valid 3-coloring of the graph G. Repeating the
resulting protocol many times would not be wise :).

References

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM, 38(3), 1991.
4

10


	Recap
	Some new notation

	Commitment
	Zero knowledge for all of NP
	3-Colorability
	Hamiltonian Cycle

	Bonus content: On auxiliary input and zero knowledge under repetition

