
Introduction and Shannon’s one-time pad

Noah Stephens-Davidowitz

May 27, 2023

1 Cryptographic pre-history

The most basic cryptographic task is secure communication. In this task, Alice wants to send a
message to Bob—via a letter or over the internet or whatever—without letting an eavesdropper
named Eve learn the contents of the letter. We assume that Eve is at least a half-decent eavesdrop-
per, so that she can probably get her hands on the letter itself if she wants to. So, Alice can’t just
write the message to Bob in plain English and hope to get away with it. (Maybe Alice and Bob
are elementary school students passing notes in class and Eve is their teacher, or Alice and Bob are
revolutionaries and Eve runs an authoritarian government. Anyway, the question isn’t interesting
unless we assume that Eve might have the ability to see the letter.) So, how can Alice ensure that
Bob is able to decode her message from the letter but that Eve is not?

A famous classical method for encoding a message is known as the Caesar cipher, because Julius
Caesar used it. The basic idea is just to replace the letter ‘A’ with ‘B’, ‘B’ with ‘C’, ‘C’ with ‘D’,
and so on. (If you’re writing a message with a ‘Z’ in it, you can replace it with an ‘A’. Or, you
can just avoid discussing zebras and zippers in your messages.) So, this encryption procedure takes
the plaintext message ‘ATTACK AT DAWN’ to the ciphertext ‘BUUBDL BU EBXO’. This can be
easily decrypted if you know how the encryption was performed, but it looks like gibberish to the
unitiated. There are a lot of variants of this simple idea, in which we swap letters or move them
around in some simple systematic way (uchsay asay igpay atinlay). (When I was a kid, my friend
and I had a not very good code in which we fust fort fof fut fan feff fat fe fart fof feach ford.)

These encryption schemes (often called ciphers in this context) aren’t so bad if Eve is unlikely
to put much effort into decoding the message. E.g., they might be fine for kids keeping secrets from
their parents. But, if Eve is a government or large corporation, or even just a curious kid with
some time on her hands, this won’t be very effective. E.g., given the ciphertext above, one might
quickly guess that each instance of ‘B’ in the ciphertext represents the same letter in the original
plaintext, and the same holds for ‘U’, which already gives you a lot of information. (You might
also guess that ‘B’ and ‘U’ represent relatively common letters, and that they are letters that often
appear next to each other.) If you happen to know a little bit of context, like that the first word
of the plaintext could be ‘ATTACK’, then it’s pretty easy to see that the plaintext likely has the
form ‘ATTACK AT A ’, and you can be pretty sure that Alice wasn’t telling Bob ‘ATTACK AT
DUSK’. Of course, even slightly more careful analysis will reveal the entire plaintext.

One can come up with far more complicated encryption schemes that try to avoid the flaws
described above. But, by the middle of the 20th century, after nations had spent vast resources
building and breaking codes during World War II, it was clear that we needed a more rigorous

1

https://en.wikipedia.org/wiki/Pig_Latin

understanding of encryption. (And, of course, with the internet, this became a civilian concern as
well.)

2 Shannon security

Claude Shannon was the first to give a rigorous notion of the security of an encryption scheme [Sha49],
and his definition is now typically called either perfect security, Shannon security, or Shannon se-
crecy. (Some people use these terms for formally different definitions, and then prove that these
definitions are actually equivalent.) He also showed a very simple encryption scheme that satisfies
his definition. His scheme is even optimal in a certain precise sense, as we will see. So, in some
sense, he solved the problem of encryption completely all the way back in the 1940s. (We’ll see
that, in another sense, Shannon’s scheme is quite unsatisfying. We’ll then spend the next eight or
nine lectures developing the basic cryptographic machinery necessary to build a better scheme.)

Before we see Shannon’s definition of security, let’s just define what we mean by an encryption
scheme, even a possibly insecure one. (It’s quite common in cryptography to have two parts to a
definition. First, there’s typically a notion of correctness, which is only concerned with making sure
that your construction is useful—that, e.g., Alice and Bob learn what they’re expected to learn—
and doesn’t worry at all about adversaries like Eve. Then, there’s usually a notion of security,
which considers an adversary like Eve.)

Presumably an encryption scheme should specify some way to encode and decode a message.
But, we should be very careful. Indeed, the whole point of this exercise is to give a truly rig-
orous definition. In fact, cryptography—especially cryptography before Shannon—has a history
of insufficiently rigorous definitions leading to broken schemes.1 In fact, it should also probably
define what the scheme counts as a “message” and what the scheme counts as an encoding of a
message. (E.g., are messages and their encodings both bit strings? Is one written in ASCII?)
Etc. Because the words “message” and “encoding” are horribly overloaded in this space, we use
the words “plaintext” and “ciphertext” for the “unencoded message” and the “encoded message”
respectively.

Most importantly, the key part of the definition is the notion of a secret key k, which encapsu-
lates formally the information that Bob knows that will allow him to decrypt the message, which
is presumably information that Eve does not have. The key will just kind of come along for the
ride in our definition of correctness below, but it will be essential when we consider security.

Definition 2.1 (Encryption scheme). An encryption scheme consists of a plaintext space M,

1Even in this course, in which our whole goal is to make our definitions precise and to prove theorems rigorously,
I will still not be quite fully formal. I’ll try my best to hide the informality from you, and we’ll see if you notice.
The good news is that, where I am informal, you can rest assured that everything we cover in this course can be
made fully formal. However, this is a dangerous precedent. It is quite common to, e.g., find an informal proof that
a certain cryptographic scheme is secure only to later realize that it is totally broken. This is much more common
than in closely related fields, like in the study of algorithms or complexity theory, and it has led to a culture among
(good) cryptographers of being extremely careful. Indeed, a major flaw of this course is that I won’t show you enough
examples of cryptography done wrong. We will spend a lot of time very carefully and tediously proving the security
of various schemes, but not much time seeing why we are so incredibly careful in this space. We are careful because it
is very easy to make mistakes in this space, and bad proofs of security can have serious consequences—for our pride
and our safety. Every professional cryptographer knows the feeling of having written up a beautiful “proof” that
some beautiful construction of theirs is secure only to realize that the proof has some subtle flaw and the construction
is actually trivially broken.

2

a ciphertext space C, and a key space K together with three (possibly randomized) algorithms
(Gen,Enc,Dec) that follow the satisfying basic properties.

1. The key generation algorithm Gen takes no input and outputs a key k ∈ K, i.e., k ← Gen().

2. The encryption algorithm Enc takes as input a key k ∈ K and a plaintext m ∈M and outputs
a ciphertext c ∈ C, i.e., c← Enc(k,m).

3. The decryption algorithm Dec takes as input a key k ∈ K and a ciphertext c ∈ Cand outputs
a plaintext m ∈M, i.e., m← Dec(k, c).

4. Correctness: For any k ∈ K and m ∈M,

Dec(k,Enc(k,m)) = m .

(Since the algorithms Enc and Dec are randomized, we should formally say that correctness
holds with probability 1, but we adopt the common convention of writing A = x when a random
variable A equals x with probability 1.)

The key generation algorithm Gen is only really interesting if it is randomized (since otherwise
its output is fixed, and therefore cannot really be viewed as hidden from Eve). Connecting this
back to our story before, we think of Alice and Bob getting together before our story begins (say,
before class or before the war started) and together running the Gen to obtain a shared secret key
k ∈ K. They can then use this key to communicate. I.e., if Alice wants to send a plaintext message
m to Bob, she computes c ← Enc(k,m), and sends Bob c (perhaps via mail or over the internet).
Bob reads Alice’s message by computing m← Dec(k, c). Correctness guarantees that Bob gets the
correct message.

The intuitive idea of security should then be clear: no adversary Eve who “does not know the
secret key k” should be able to “learn anything about the plaintext message m from the ciphertext
c.” (Here, and throughout this course, I am using scare quotes around text that provides some
intuition, but is certainly not formal. One should be careful not to take such statements too
seriously, and one should never view such use statements as justification for security. The intuitive
concept that Eve “does not know the secret key k” is really captured formally by the fact that the
key is generated randomly using the key-generation algorithm Gen, and the definition below is just
one way to formalize the intuitive idea that Eve is unable to “learn anything about the plaintext m
from the ciphertext c.”) Here is one way to make this formal, which we will call Shannon security.

Definition 2.2 (Shannon security). An encryption scheme (Gen,Enc,Dec) is Shannon secure if
for any probability distribution M over the plaintext spaceM and every fixed plaintext m ∈M and
ciphertext c ∈ C,2

Pr
M
[M = m] = Pr

M,k←Gen()
[M = m | Enc(k,M) = c] .

The adversary Eve doesn’t appear directly in this definition, but she is there implicitly. One
way to think about this definition is as a sort of Bayesian statement about what Eve knows before
she sees c and after she sees c.

2Formally, we should restrict our attention to c ∈ C such that Pr[Enc(k,M) = c] > 0, since otherwise the
conditional probability is not defined. But, this is too pedantic even for these notes. We therefore adopt the common
(silly) convention that equations (or inequalities) are always true when at least one side of the equation involves
something that conditions on a zero-probability event.

3

E.g., the boring constant distribution in which M = m∗ with probability one corresponds to the
case when Eve knows what plaintext m∗ Alice plans to send before she sends it (which is very often
the case in practice—e.g., maybe Alice quite kindly says “good morning” to Bob every morning).
For this distribution, our security definition does not tell us anything, since the probability on the
left and the probability on the right are equal to 1 no matter what the encryption scheme is. This
is, of course, perfectly reasonable. There’s not much point to using an encryption scheme when
Eve already knows Alice’s plaintext.

However, if Eve has some uncertainty about which plaintext Alice wishes to send, then we
can capture this using a non-constant probability distribution M that represents Eve’s knowledge.
For example, maybe M ∈ {‘ATTACK AT DAWN’, ‘ATTACK AT DUSK’} is uniform, which cor-
responds to the case in which Alice is equally likely to send either of these messages, as far as Eve is
concerned. (Going forward, we will use the notationM ∼ {‘ATTACK AT DAWN’, ‘ATTACK AT DUSK’}
for the uniform distribution.) If a scheme is Shannon secure, then this probability distribution re-
mains unchanged after seeing the ciphertext Enc(k,M), so that in a very precise sense Eve knows
exactly as much about the plaintext after seeing the ciphertext as she did before. So, she has
learned nothing from the ciphertext.

More generally, this definition exactly formally captures the idea that “Eve does not gain any
information about the plaintext m from the ciphertext c.”

Here’s another definition that is a bit easier to understand—at least for me. (Spoiler: we’re
going to prove that these definitions are equivalent.)

Definition 2.3 (Perfect indistinguishability). An encryption scheme (Gen,Enc,Dec) is perfectly
indistinguishable if for any two messages m0,m1 ∈M and any ciphertext c ∈ C,

Pr
k←Gen()

[Enc(k,m0) = c] = Pr
k←Gen()

[Enc(k,m1) = c] .

In words, the above definition requires that any two plaintexts yield the same distribution on
ciphertexts. Intuively, this captures the idea that “the ciphertext is useless for Eve in the task of
distinguishing between two plaintexts” (‘ATTACK’ and ‘RETREAT’, say).3

We can now prove the equivalence of these definitions. This allows us to work with whichever
definition we like in different contexts. This also suggests that we have the “right” definition(s). At
the very least, there’s no need to argue about which of the two definitions is better, since they are
equivalent. (We will see below, however, that these definitions are in some sense far too strong.)

Theorem 2.4. An encryption scheme is Shannon secure if and only if it is perfectly indistinguish-
able.

Proof. The proof is straightforward, and is essentially just a single application of Bayes’ theorem.
But, since this is the first lecture, we will do it very carefully.

First, we show that any Shannon secure scheme is perfectly indistinguishable, i.e., we assume
Shannon security and show that for any distinct two plaintexts m0,m1 ∈M and ciphertext c ∈ C,
Pr[Enc(k,m0) = c] = Pr[Enc(k,m1) = c]. To that end, let M be the distribution defined by

3Whenever you see a definition like this, it is always a good idea to play with it a bit to understand it better.
E.g., here are some basic questions to ask yourself that happen to have boring answers in this case: (1) What does
the definition say when m1 = m2? (2) What if c is not in the image of Enc? One can ask more interesting questions
as well. E.g., what happens if we replace m0 and m1 by random variables M0 and M1 (and take the probability over
both k and Mb)?

4

Pr[M = m0] = Pr[M = m1] = 1/2, i.e., the uniform distribution on {m0,m1}. Then, by Shannon
security, for any b ∈ {0, 1}, we have

1/2 = Pr
M
[M = mb] = Pr

M,k←Gen()
[M = mb | Enc(k,M) = c] .

Applying Bayes’ theorem yields

Pr[M = mb | Enc(k,M) = c] =
Pr[M = mb] Pr[Enc(k,mb) = c]

Pr[Enc(k,M) = c]
=

Pr[Enc(k,mb) = c]

2 Pr[Enc(k,M) = c]
.

Putting these two equalities together, we see that

1/2 =
Pr[Enc(k,mb) = c]

2 Pr[Enc(k,m) = c]
,

which of course implies that

Pr[Enc(k,mb) = c] = Pr[Enc(k,M) = c] ,

and in particular that Pr[Enc(k,m0) = c] = Pr[Enc(k,m1) = c], as needed.
Now, suppose that our encryption scheme is perfectly indistinguishable, and let M be a distri-

bution over the plaintext space with Pr[M = m0] > 0 and c ∈ C. We have

Pr
M,k←Gen()

[M = m0 | Enc(k,M) = c] =
PrM [M = m0] · Prk←Gen()[Enc(k,m0) = c]

PrM,k←Gen()[Enc(k,M) = c]
.

But, by perfect indistinguishability, we know that

Pr[Enc(k,M) = c] =
∑

m1∈M
Pr
M
[M = m1] · Pr

k←Gen()
[Enc(k,m1) = c]

=
∑

m1∈M
Pr
M
[M = m1] · Pr

k←Gen()
[Enc(k,m0) = c]

= Pr
k←Gen()

[Enc(k,m0) = c] ,

where the last equality just uses the fact that
∑

m1∈M Pr[M = m1] = 1. Plugging this in to the
above, we see that

Pr[M = m0 | Enc(k,M) = c] = Pr[M = m0] ,

as needed.

2.1 What about Eve?

Here, we quickly present yet another equivalent definition of security for an encryption scheme.
This definition is not very important and rather unnatural in this context. However, it has the
benefit that it directly refers to the adversary Eve, so that it makes the relationship to the original
problem that we were trying to solve (letting Alice and Bob communicate without Eve learning
the contents of their communication) explicit. It is also much more similar to most of the other
definitions that we will see in this course.

To that end, we imagine Eve playing a game in which she is given a ciphertext, and her goal is
to determine whether it is an encryption of m0 or an encryption of m1.

5

Definition 2.5 (Perfect security against an adversary). An encryption scheme (Gen,Enc,Dec) is
perfectly secure against an adversary if for any adversary E : C → {0, 1} and any pair of messages
m0,m1 ∈M,

Pr
b∼{0,1}, k←Gen()

[E(Enc(k,mb)) = b] = 1/2 .

Here, E is any function at all that maps ciphertexts to bits. (We could be more general here
and allow for the possibility that Eve is randomized, but we will not bother with this.)

In words, imagine Alice flipping a coin b ∼ {0, 1} and using this to decide which message mb

to send. An encryption scheme is secure under this definition if no procedure E used by Eve will
allow her to guess Alice’s coinflip better than a random guess, even if she is given Enc(k,mb). (We
often do not distinguish between “Eve’s algorithm E” and Eve herself. Instead, we just refer to E
as Eve.)

It is a good exercise to convince yourself that this definition is equivalent to perfect indistin-
guishability (and thus to Shannon security). Notice that perfect indistinguishability is actually a
special case of the above definition in which we take E to be the particular function E∗ that outputs
0 on input c if Prk←Gen()[Enc(k,m0) = c] ≥ Prk←Gen()[Enc(k,m1) = c], and otherwise outputs 1.
So, the equivalence of these two definitions essentially boils down to arguing that, if E∗ has no
advantage in guessing b, then no adversary E does.

This is also a good opportunity to try modifying a definition to see what happens. It turns
out that this definition is quite robust to changes. For example, we get an equivalent definition
if we replace Pr[· · ·] = 1/2 by Pr[· · ·] ≤ 1/2; if we give E m0 and m1 as input in addition to an
encryption of mb; if we use random variables M0,M1 ∈ M instead of fixed messages m0,m1; if
we use the analogous definition for a triple of messages m0,m1,m2; if b is chosen from a biased
coin (and the probability 1/2 is updated appropriately); etc. Less obviously, the definition remains
the same even if we bound the computational power of E . (Specifically, the definition remains
unchanged if we restrict our attention to functions E that are computable with “just a bit more
computational power than what is needed to run the Gen algorithm and compute Enc(k,mb).” See
if you can figure out why!)

2.2 The key is key

A crucial aspect of the above definitions is that they formalize the notion of a secret key. Specifically,
in our story about Alice, Bob, and Eve, the secret key is something that Alice and Bob know but Eve
does not. Clearly, Bob must know something that Eve does not, since Bob has enough knowledge
to decrypt the ciphertext sent to him by Alice, and we certainly don’t want Eve to be able to do
this as well.

When Alice and Bob use informal encryption schemes like the Ceasar cipher, they are implicitly
assuming that Eve does not know something that Bob knows, such as the cipher itself. Such an
assumption is referred to as “security by obscurity”—i.e., security under the assumption that the
adversary “doesn’t know what you’re doing.”

In contrast, our new formal definitions are very clear about what Eve does not know: the secret
key k. To make this precise, we don’t just say that “k is something that Eve does not know” (so
that k could be a proof of the Riemann hypothesis or the password to your email account or your
favorite color or whatever). Instead, we explicitly say that the key k is generated in a specific
way—by the randomized algorithm Gen—and we formulate an experiment in which the secret key
is a random variable. E.g., if in the definition of perfect security against an adversary, we gave E

6

the key k as input, the definition would obviously be unachievable (at least for correct encryption
schemes).

On the other hand, nothing other than the secret key is obscured here. In our story, Eve may
know the algorithms Gen, Enc, and Dec. She may know the potential messages that we might
send (e.g., the distribution M or the pair of messages m,m′, depending on the definition). This
notion is captured implicitly by our definitions, which apply to fixed schemes (Gen,Enc,Dec) and
quantify over all messages m,m′ or distributions of messages M or algorithms E . (Make sure you
understand this. It’s very common for students to get confused about “whether Eve knows the
algorithms (Gen,Enc,Dec).” The short answer is that she does in fact know these algorithms. The
more precise answer is that these are fixed algorithms, and we are quantifying over all possible
adversaries E , including adversaries E that, e.g., run Enc as a subprocedure.)

Remark (Does Alice need the key?). The observant reader might have noticed that the above
argument only shows that Bob must know something that Eve does not, since Bob must know how
to decrypt a ciphertext. On the other hand, Alice only needs to know how to encrypt a plaintext,
and it is not immediately clear whether giving this ability to Eve would be a problem. In particular,
maybe there exist encryption schemes in which anyone can encrypt a message (without knowledge
of any secret information), but only Bob can decrypt? This (crazy!) idea is what led to public-key
encryption, which we will cover in detail later in the course. A public-key encryption scheme does
not require Alice and Bob to somehow share a secret before communicating, which is why most
internet traffic relies on public-key encryption.

3 The one-time pad

So, we have a very nice, strong definition. But, it’s useless if we can’t find an encryption scheme
satisfying it. Fortunately, Shannon discovered such a scheme: the one-time pad. It is quite simple
and elegant.

In this scheme, the plaintext space, key space, and ciphertext space are all {0, 1}n for some
integer n. (We simply choose n large enough to accomodate the plaintexts that we’d like to send.)
The key-generation algorithm Gen simply samples a uniformly random bit string for the secret key,
k ∼ {0, 1}n. The encryption algorithm then takes the bit-wise XOR of the key with the plaintext
c = Enc(k,m) := k ⊕m. (E.g., 0010 ⊕ 1110 = 1100.) And, of course, decryption simply undoes
this operation, which in this case turns out to be the exact same operation m = Dec(k, c) := k ⊕ c
since XORing with the same string twice gets you back where you started. A bit more formally,
we rely for correctness on the simple fact that k ⊕ (k ⊕m) = m for any k,m ∈ {0, 1}n.

The one-time pad is very elegant and simple, and very efficient as well. It’s also very easy to
prove that it’s perfectly indistinguishable, which immediately implies that it is also Shannon secret
(since we proved that the two definitions are equivalent).

Theorem 3.1. The one-time pad is perfectly indistinguishable.

Proof. For two plaintexts m0,m1 ∈ {0, 1}n and a ciphertext c ∈ {0, 1}n, notice that there are
unique keys k0 := m0 ⊕ c and k1 := m1 ⊕ c satisfying Enc(kb,mb) = c. Therefore,

Pr
k←Gen()

[Enc(k,mb) = c] = Pr[k = kb] = 2−n ,

which is independent of b. So, clearly Prk←Gen()[Enc(k,m0) = c] = Prk←Gen()[Enc(k,m1) = c], as
needed.

7

Corollary 3.2. The one-time pad is Shannon secure.

4 The one-time pad can only be used one time!

The one-time pad is used in many applications practice—e.g., by intelligence agencies.4

However, the scheme is not useful for most practical applications. For example, suppose Alice
and Bob share, say, 128 uniformly random bits. Then they can only use this key to send a 128-bit
plaintext. If Alice wants to send Bob a 3 GB video, then they need to exchange a 3 GB key!

A closely related issue is that Alice and Bob cannot reuse their key. E.g., if Alice sends Bob
c1 = m1 ⊕ k and later sends him c2 = m2 ⊕ k, then Eve can trivially learn m1 ⊕m2 = c1 ⊕ c2. In
particular, Eve can determine whether m1 and m2 are the same message or different, or whether
their first bit is the same or different. That is really bad! This is why it is called the one-time pad.
You should only use each key once when using the one-time pad.

This next theorem (also proven by Shannon) shows that the one-time pad is essentially the
best that we can do. In particular, if we want perfect indistinguishability when sending a 3 GB
plaintext, we need a 3 GB key! (Notice that this implies that we would need a fresh 3 GB key to
encrypt another message.)

Theorem 4.1. If (Gen,Enc,Dec) is a perfectly indistinguishable (and correct) encryption scheme,
then |K| ≥ |M|.

The intuitive idea of the proof is as follows. “For every plaintext, there must be at least one key
that maps it to every (valid) ciphertext— otherwise the scheme is not perfectly indistinguishable.
Since two distinct plaintexts cannot map to the same ciphertext under the same key (because then
we could not possibly have correctness), we must have at least as many keys as ciphertexts. Since
there must be at least one distinct ciphertext for each plaintext, this implies that we must have as
many keys as plaintexts.” This argument actually goes through when Enc is deterministic. But, if
Enc is randomized, then it gets tricky (because there could be many ciphertexts that correspond
to the same key k and plaintext m, which means there could easily be more valid ciphertexts than
keys). The solution is to study Dec instead of Enc, since the output behavior of Dec is fixed by
the assumption that the scheme is correct. (Confession: After struggling a bit to make the above
intuition go through, I had to look up this proof.)

Proof. Fix any c ∈ C such that there exists an m and k with Pr[Enc(k,m) = c] > 0. Let

Mc := {m′ ∈M : ∃k′ ∈ K, Dec(k′, c) = m′}

be the set of all plaintexts that can be the result of decrypting c. Notice that |Mc| ≤ |K|.5
Furthermore, perfect indistinguishability implies that

Pr
k′←Gen()

[Enc(k′,m′) = c] = Pr
k′←Gen()

[Enc(k′,m) = c] > 0

4If you’ve ever seen the TV show The Americans, which is about Soviet spies in America, you’ll notice that they
spend a lot of time carefully encrypting and decrypting messages using the one-time pad. (It’s what they’re doing
when they scribble a bunch of letters in notebooks in the laundry room.)

5Even here, I am cheating slightly. A fully rigorous proof would worry about the possibility that a randomized
decryption algorithm sometimes outputs different plaintexts on input (k′, c). Correctness rules this out for valid
ciphertexts (though not for invalid ciphertexts, for which Pr[Enc(k,m) = c] = 0 for all (k,m)), but one must argue
this carefully.

8

for all plaintextsm′ ∈M. By correctness, this implies that there exists some k′ with Dec(k′, c) = m′

for every plaintext m′ ∈M, so thatMc =M, and the result follows.

4.1 What about Eve (again)?

The proof above says that we cannot obtain a very strong notion of security unless |K| ≥ |M|.
This in particular implies that, if we wish to use the scheme to send many short messages, there is
a restriction on how many short messages we can send (since we can think of many short messages
as one very long message). This is not acceptable. (It essentially means that for each message Alice
and Bob wish to send securely, they must somehow find a way to previously securely exchange a
fresh random key of the same length.)

So, we want to weaken our security definition in order to avoid this issue. To that end, let’s see
how the above impossibility proof relies on the strength of the definition in order to see how we
might weaken the definition to avoid the impossibility.

To do so, let’s suppose that we have some encryption scheme for which |K| < |M| and try to
understand what the above proof tells us about Eve’s ability to break this scheme. In fact, the
proof quite explicitly suggests a way for Eve to attack the scheme. (Remember that Eve’s goal is
to take as input a ciphertext c and to guess whether it is an encryption of m0 or m1, with success
probability better than 1/2.) Given some ciphertext c ← Enc(k,mb), Eve can compute the set
Mc := {Dec(k′, c) : k′ ∈ K}. If m0 ∈ Mc but m1 /∈ Mc, then Eve can confidently output 0—i.e.,
she can confidently declare that c is an encryption of m0, not of m1, and therefore b = 0. Similar,
if m1 ∈ Mc but m0 /∈ Mc, Eve can confidently output 1. If m0,m1 ∈ Mc, then Eve can answer
arbitrarily—e.g., always outputting 0, or flipping a coin and outputting the result. The above proof
shows that, for at least one pair of messages m0,m1 ∈ M, there is a non-zero probability p > 0
that one of the plaintexts will not lie in Mc, in which case Eve will succeed with probability at
least (1 + p)/2 > 1/2.

But, if Eve is meant to represent some entity in the real world—a person, or a computer, or a
nation-state, or even an unimaginably advanced extraterrestrial civilization that has colonized an
entire galaxy—then computing Mc might be a bit. . . challenging. Typically, we will have |Mc| ≈
|K|, so that if our key is just, say, 256 bits long, then |Mc| ≈ 2256 ≈ 1077. This is significantly
more than number of elementary particles contained in the entire Milky Way galaxy (ignoring dark
matter and dark energy). So, if Eve wanted to write Mc down, she would need a lot of ink—so
much that she’d probably have to borrow some ink from some neighboring galaxies! Of course, Eve
does not actually need to write down Mc in order to perform the above attack. She just needs
to iterate through it, which would take about 1030 years, even if she could try one message in a
Planck time (which by some definition is the “smallest possible unit of physical time”).6

This suggests that we should not model Eve using an arbitrary function mapping ciphertexts
to bits (i.e., an arbitrary entity that “guesses” whether a ciphertext is an encryption of m0 or m1

6Notice that we have not proven that this is the only way to attack a particular encryption scheme with |K| < |M|.
There can certainly be other ways. For example, consider the variant of the one-time pad in which we fix the first
bit of the key to be zero, which has |K| = |M|/2. This can be trivially broken if m0 and m1 have different first bits.
The adversary certainly doesn’t need to enumerate through all possible keys to break this scheme—she only needs
to look at the first bit of the ciphertext to figure out what the first bit of the plaintext is. More generally, one must
always worry that our adversary is far more clever than we are, and one must carefully avoid ever assuming that
“there is only one way to break a cryptographic scheme.” Here, I am merely pointing out that the specific attack
that is suggested by our impossibility proof is not efficient, which is very very different from saying that there is no
efficient attack.

9

using whatever procedure she likes). Instead, we should model Eve as a computationally bounded
adversary. We’ll restrict Eve to have a gigantic but finite amount of computational power. I.e.,
we’ll simply accept that someone with a computer the size of the galaxy might be able to figure
out what Alice’s plaintext is after computing for 1030 year. That’s a sacrifice we’re simply willing
to make.

Another issue with the above attack is that, even if the adversary were powerful enough to
carry it out, it might only succeed with vanishingly small probability. In particular, while we know
that there exists some ciphertext c ∈ C such that, say, m0 ∈ Mc but m1 /∈ Mc, this choice of
c might be exceedingly rare. For example, consider the variant of the one-time pad in which the
key space is K = {0, 1}n \ (1 . . . , 1), i.e., all strings except for the all-ones string. This scheme
has |K| = |M| − 1 < |M|. But, for any plaintext m1 ∈ {0, 1}n, there is a single fixed ciphertext
c := m1⊕(1, . . . , 1) such that m1 /∈Mc. So, for this scheme, the above attack will guess the correct
value of b with probability 1/2+2−n. Again, if for example n = 256, then it’s hard to imagine caring
about the distinction between probability 1/2 and probability 1/2+2−n. (Indeed, in anything close
to a real-world situation, there will be many ways that things can go catastrophically wrong that
have probabilities far higher than 2−256. E.g., maybe there’s a 1/240 ≈ 1/1012 chance that Alice
accidentally uses the wrong secret key k; or that Bob misinterprets Alice’s plaintext and attacks at
the wrong time; or that Alice accidentally forgets to encrypt the plaintext at all and just sends it
in the clear.)

So, though we’ve just proven a very strong impossibility result, the above discussion gives us
a small glimmer of hope. Maybe we can’t have perfectly secure encryption schemes with reusable
keys. But, perhaps we can settle for such encryption schemes in which, e.g., any adversary with
all of the resources of our galaxy would need at least 1030 years in order to guess Alice’s plaintext
with probability larger than 1/2 + 2−256. This turns out to be a very good idea.

References

[Sha49] C. E. Shannon. Communication theory of secrecy systems. The Bell System Technical
Journal, 28(4), 1949.

10

	Cryptographic pre-history
	Shannon security
	What about Eve?
	The key is key

	The one-time pad
	The one-time pad can only be used one time!
	What about Eve (again)?

