
Proof Systems and Zero-Knowledge Proofs

Noah Stephens-Davidowitz

June 9, 2023

1 Computational Proof Systems

A huge amount of progress in computer science has been made by attempting to computationally
formalize the notion of a proof. This led to the definition of NP;1 the definition of the classes IP
(interactive proofs, which we will see today), AM, and MA; the celebrated PCP theorem (where
PCP stands for “probabilistically checkable proofs”); etc.

1.1 NP review

The canonical example is the complexity class NP. Intuitively, a language L ⊆ {0, 1}∗ is in NP if
“for every x ∈ L, there exists a simple proof w showing that x ∈ L.” The proof is written using
the letter w because it is often referred to as a witness for the fact that x ∈ L.

For example, consider the language L2primes := {N ∈ N : N = pq, for primes p, q} consisting
of natural numbers N that are the product of two primes. (Here, we have jumped from bit strings
{0, 1}∗ to natural numbers N. We of course are not bothered by questions like how to represent
natural numbers as bit strings.) Without even formally defining what a “simple proof” is, it should
be clear that this particular language is in NP. In particular, to prove that N ∈ L2primes, it suffices
to simply provide the factorization of N . In other words, to prove that N ∈ L, it suffices to simply
provide primes p, q such that pq = N . (Here, we are taking for granted the fact that it is easy to
check whether or not p and q are prime. In fact, we have already used this fact in a few places,
though it is certainly not obvious.)

This kind of proof has two key properties (shared by any reasonable proof system), which we
first describe only informally, called completeness and soundness. Completeness means that you
can always prove a true statement, e.g., if N is a product of two primes, then you can always
present me with the two primes. Soundness means that you cannot prove a false statement, e.g.,
if N is not a product of two primes, then you will not be able to present me with two primes
p, q whose product is N . (In this context, completeness and soundness are so trivial that it might
seem strange to directly call attention to them at all. Indeed, it is often quite obvious that a proof
system is complete and sound, but one must be careful, since obviously “proof systems” that are
not complete or not sound are quite a problem.)

To make this idea useful, we must formally define the verifier of the proof and place a compu-
tational bound on the verifier. For example, if I were computationally unbounded (I am not !), then
it would be silly to prove to me that N is the product of two primes, since I would already know

1Okay, actually the original definition of NP was not proof based. But in hindsight it should have been defined in
terms of proofs.

1

that N is the product of two primes! In this class we therefore of course restrict our attention to
polynomial-time verifiers. We will actually briefly restrict our attention to deterministic verifiers
because this is how NP was historically defined. (The distinction won’t be very important for us.
The class in which the verifier is allowed to be randomized is known as MA. NP has some additional
advantages over MA in that it seems to have many natural complete problems, while MA does not
seem to have very many.)

The verifier will take as input the statement x and a witness (or proof) w and output 1 if it
“agrees with the proof” and zero otherwise. So, our formal definition is as follows.

Definition 1.1. A language L is an NP language if there exists a deterministic polynomial-time
algorithm V (the verifier) and a polynomial p(n) (a bound on the length of the proof) such that the
following both hold.

• (Completeness.) For every x ∈ L, there exists a witness w ∈ {0, 1}∗ with |w| ≤ p(|x|) (i.e.,
a “polynomial-sized proof”) such that V(x,w) = 1.

• (Soundness.) For every x /∈ L and every w ∈ {0, 1}∗ with |w| ≤ p(|x|), V(x,w) = 0.

Notice that we require that the length |w| of w is polynomially bounded in the length |x| of
x. Otherwise, the fact that V is polynomially bounded would be meaningless. (Make sure you see
why.)

(You might have seen a different definition of NP before. NP is often defined as the class of
languages decidable by a polynomial-time non-deterministic Turing machine. If you have seen the
other definition, then you should be able to see the equivalence by noting that the non-deterministic
choices of the Turing machine correspond to a witness w. Also, I hope you agree that the above
definition is much nicer!)

For example, for the L2primes language above, a verifier can take as input an integer N and a
witness w = (p, q) consisting of a pair of two integers. The verifier then checks that N = pq and
that p and q are both prime (which can be done efficiently).

1.2 Interactive Proofs (IP)

In some sense, the class NP fully captures the idea of a proof as we typically use it in mathematics.
E.g., when we prove a statement like x ∈ L in a paper or in lecture or for a problem set, we
more-or-less just write down a string of characters w, which can be checked mechanically by any
mathematically-inclined human in order to be fully convinced that the statement is true. (At least,
this is an idealized version of what happens. In reality, our proofs are rarely fully formal :), and
what counts as a fully formal proof is rather ambiguous and is really more about culture than about
rigor. Still, this idealized model is good to keep in mind when writing proofs.)

However, this is clearly not the only way that we can convince each other of certain truths.
E.g., this type of formal mathematical proof is inherently non-interactive, in the sense that once
the proof is written, the verifier is expected to understand it by himself. But, of course, it is often
far easier for the verifier to understand something if he can interact directly with the prover.

This leads us to the notion of an interactive proof. An interactive proof augments the notion
of proof in three ways. First, we explicitly consider a prover P. Our prover is actually a computa-
tionally unbounded algorithm. In the case of NP, the prover was implicitly defined in terms of the
witness w as follows: we can imagine some computationally unbounded prover P taking as input

2

x and searching all possible strings to find a witness that she knows would convince V that x ∈ L.
E.g., she might try all possible factors of N and output the factors once she finds them. (Since P is
computationally unbounded, she can iterate through all possible bit strings, and she can certainly
check whether V(x,w) = 1.)

The second way in which we change our definition is to make the proof interactive. In NP the
role of the prover (to the extent that she has any role at all) is simply to write down the string w.
In contrast, in our new definition of interactive proofs, the prover “stays around to answer questions
that the verifier asks.” In particular, the prover and the verifier engage in some interactive protocol.

Prover Verifier
INPUT: x INPUT: x

q1←−−
a1−−→
q2←−−
a2−−→
...
qm←−−
am−−→

OUTPUT b

Remark (A tedious remark about how to formalize interaction between two algorithms). One way to
pedantically formalize an interactive protocol between two algorithms V and P is to view V and P as “next-
message algorithms.” E.g., V takes as input the “actual input x,” a state σ, and the transcript so far
(q1, a1, . . . , qi, ai), and outputs the next message qi+1 and an updated state. The protocol proceeds by first
calling V on input x together with the empty state and the empty transcript, receiving as output a new state
σ and the first message q1; then calling P on input (x, q1) and the empty state, receiving as output a1 and the
state ρ of P; then calling V on input (x, σ, q1, a1); etc. The protocol ends when V outputs a special message
(say, e.g., the empty message, or the special symbol ⊥), and the “output of V” is the final state of V. The
running time of V and P in the above is measured relative to the length of x.

It is sometimes useful to work at this level of formality, but usually best to just draw pretty diagrams
like the one above. One important thing that this formality makes clear, however, is that the prover and
the verifier can definitely maintain a state between messages. I.e., they have a state that they update at
every step. For example, if in the first step the verifier samples x ∼ {0, 1}n and then sends its first message
q1 := f(x) for some one-way function f , the verifier can still “remember” x later. This is formally captured
by the idea that x can be included as part of the state σ.

The third way in which we change the definition is to allow the verifier to be randomized. Of course,
this is quite natural for us because in this course we almost always allow our algorithms to be randomized.
Here, randomness serves a particularly important purpose (just like it does in many of our applications),
and we will have more to say about this below.

For now, let’s fix some notation to allow us to reason about protocols more easily. We write 〈P(x),V(y)〉
to represent the interaction of P and V in which P takes as input x and V takes as input y. (In the above
example, y = x, but this of course does not have to be true in general.) We write outV〈P(x),V(y)〉 to
represent the output of V in this interaction. Notice that outV〈P(x),V(y)〉 is a random variable, which
depends on the random coins of V and P. We also sometimes use the notation Π = (P,V) to represent the
pair of algorithms P and V, which we think of as a representation of the protocol that P and V engage in.

We can now write our formal definition.

Definition 1.2. A language L ⊆ {0, 1}∗ is in IP if there exists a probabilistic polynomial time verifier V
and a (possibly unbounded) P prover such that the following hold.

3

• (Completeness.) For every x ∈ L,

Pr[outV〈P(x),V(x)〉 = 1] = 1 .

• (Soundness.) For every x /∈ L and every (possibly unbounded) algorithm (called a “cheating prover”
or “malicious prover”) P∗,

Pr[outV〈P∗(x),V(x)〉 = 1] ≤ 1/2

Intuitively, the above definition says that “the verifier can always be convinced of a true statement,”
and “no prover can convince the verifier of a false statement with probability better than 1/2.” This value
of 1/2 is called the soundness error, and the choice of 1/2 is arbitrary. In particular, by repeating ` times a
protocol with soundness error s, we get a protocol with soundness error s`. Therefore, the definition of IP
remains unchanged if we instead require the soundness error to be, e.g., 2/3 or 1− 1/n or 2−n or 2−n

100

. (It
is always nice when our definitions are robust to such changes.)

It might seem strange that we require that the prover always convinces the verifier when x ∈ L. This
property is called perfect completeness. We could instead introduce a completeness parameter c, and replace
the completeness condition above with the condition that

Pr[outV〈P(x),V(x)〉 = 1] ≥ c .

However, it turns out that we may always assume that c = 1. In other words, if you give me a protocol
satisfying the above definition with, e.g., c = 2/3, I can convert it into a different protocol that has c = 1.
(This is not obvious. To convert a protocol with imperfect completeness c < 1 into one with perfect
completeness, one must show that the statement “a prover can cause the verifier to accept with probability
larger than 2/3” can be proven with perfect completeness.)

Finally, we notice that our definition of soundness is quite strong in that we allow for arbitrary malicious
provers P∗. E.g., we do not restrict our attention to PPT provers. This is similar to the definition of NP,
where we say that when x /∈ L, there simply does not exist a witness.

1.3 Why the verifier must be randomized

We could imagine a different definition in which the verifier V is required to be deterministic. However,
this definition turns out to be uninteresting because it turns out to be equivalent to NP. In other words,
“interaction is useless without randomness.” To see this, notice that if V were deterministic, then an
unbounded prover P could predict the messages q1, q2, . . . , qm sent by V. So, from the prover’s perspective,
the transcript (q1, a1, . . . , qm, am) would be fixed given the input x if V were deterministic. Therefore,
instead of interacting with a deterministic verifier V, the prover could simply send the entire transcript
w = (q1, a1, . . . , qm, am) as an NP witness for x.

So, any language with an interactive proof with a deterministic verifier has a non-interactive proof with
a deterministic verifier—i.e., is in NP. People sometimes explain this succinctly by saying that “interaction
is useless without randomness.”

1.4 Example: quadratic non-residuosity

Consider the group Z∗N := {z ∈ ZN : gcd(N, z) = 1} where the group operation is multiplication modulo
N , and consider the subgroup QRN := {x2 : x ∈ Z∗N} of squares modulo N . This is called the group of
quadratic residues modulo N . Notice that it is in fact a group—i.e., the product of quadratic residues is also
a quadratic residue, and the inverse a quadratic residue is also a quadratic residue.

And, not all elements in Z∗N are quadratic residues (unless N = 2). E.g., 3 is not a quadratic residue
modulo 10. (It can be helpful to work out small examples like this, so that these ideas feel less abstract.)

We can then define the language

LQR := {(N, y) : y ∈ QRN} = {(N, y) : y = x2 mod N} .

4

This language is called the language of quadratic residuosity (which I find to be very difficult to pronounce,
and slightly difficult to spell). It is also believed to be hard to efficiently decide whether y ∈ QRN , as we
saw when we saw Goldwasser-Micali encryption, i.e., we think that quadratic residuosity is not in P (or even
BPP). However, quadratic residuosity is clearly in NP, since a square root of y modulo N serves as a witness
that y ∈ QRN .

But, what about the language
LQR := {(N, y) : y /∈ QRN} ?

This is called the language of quadratic non-residuosity (which is also very difficult for me to say!). Now,
it is not so obvious what a witness for this language would look like. (Well, actually we have seen that the
factorization of N can be used as a witness for LQR, since with this we can check ourselves whether an element
is a quadratic residue. But, for now we’ll pretend that we don’t know this. It is annoyingly difficult to find
a simple example of a language that is not known to be in NP but that has a simple interactive proof. So,
we often settle for languages that have very simple interactive proofs but more complicated non-interactive
proofs.) Fortunately, there is a beautiful interactive proof system Π(V,P) for LQR. It goes as follows.

Prover Verifier
INPUT: (N, y) INPUT: (N, y)

x ∼ Z∗N , b ∼ {0, 1}
z := x2yb←−−

IF z ∈ QRN , b′ = 0
ELSE, b′ = 1

b′−−→
IF b = b’, OUTPUT 1
ELSE, OUTPUT 0

To see that this protocol works, we only need to observe two things. First, if y /∈ QRN , then x2y /∈ QRN

while of course x2 ∈ QRN . Completeness follows immediately from this.
Second, if y ∈ QRN , then z := x2y ∈ QRN is a uniformly random element in QRN . (This follows from

the fact that QRN is a group.) From this, we immediately derive soundness, by noting that when (N, y) /∈ L
(i.e., when y ∈ QRN), the distribution of the element z is independent of the bit b. Therefore, no matter
how a malicious prover behaves, it cannot guess the bit b with probability better than 1/2.

Therefore, LQR ∈ IP.
I personally think that this proof system is quite beautiful! I highly recommend taking a moment to

just sort of take in how elegant this protocol is. Notice that it is closely related to the Goldwasser-Micali
encryption scheme. E.g., it can be used to prove that the public key for a Goldwasser-Micali encryption
scheme was generated properly—or to prove that a ciphertext is an encryption of 1. Below, in Section 1.6,
I say more about why I find this to be so beautiful.

1.5 Example: graph non-isomorphism

Recall that a graph with n vertices is defined by a set G ⊆ [n]2 of edges. Each edge e = (u, v) is a pair of
vertices u, v ∈ [n]. (Formally, we have defined a directed graph here, because we have written our edges as
ordered pairs. Graphs with edges {u, v} that are unordered are undirected graphs. For the purposes of this
lecture, the distinction is not important.)

Two graphs with edge sets G1, G2 are isomorphic if there exists a bijection (often called a permutation
in this context) π : [n] → [n] such that π(G1) := {(π(u), π(v)) : (u, v) ∈ G1} = G2. In other words, two
graphs are isomorphic if there is a way to rename the vertices [n] in a way that converts G1 into G2. We
write G1

∼= G2 if G1 is isomorphic to G2.
We can then define the language Liso := {(G1, G2) : G1

∼= G2} to be the language of graph isomorphism.
Clearly, graph isomorphism is in NP, with the witness given by an isomorphism π. (It is actually widely
believed that graph isomorphism is in P, but this is not proven. The best that we know is that there exists

5

an algorithm for graph isomorphism that runs in time 2poly log(n) [Bab16], while to place it in P, we would
need a running time of poly(n) = 2O(logn). The fact that graph isomorphism is widely believed to be in P
makes this a less interesting example :-/.)

However, the complement language Liso := {(G1, G2) : G1 6∼= G2}, graph non-isomorphism, is not
obviously in NP. (Indeed, it is not known to be in NP, though certainly if graph isomorphism were in P,
then graph non-isomorphism would also be in P ⊂ NP. Formally P is closed under taking the complement
of a language, while NP is thought not to be closed under complement.)

There is, however, a very simple and beautiful interactive protocol for graph non-isomorphism, which
we present below. For the purposes of this protocol, we write Sn := {π : [n] → [n] : π is a bijection} for
the set of all bijections from [n] to [n]. (Sn is commonly referred to as the symmetric group, and it plays a
fundamental role in both group theory and graph theory.)

Prover Verifier
INPUT: (G0, G1) INPUT: (G0, G1)

π∗ ∼ Sn, b ∼ {0, 1}
G∗ := π∗(Gb)←−−

IF G∗ ∼= G0, b′ = 0
ELSE, b′ = 1

b′−−→
IF b = b’, OUTPUT 1
ELSE, OUTPUT 0

The analysis of this protocol is essentially identical to the analysis of the protocol for quadratic non-
residuosity. To see that the protocol is complete, notice that we always have G∗ ∼= Gb, and if G0 6∼= G1, then
G∗ 6∼= G1−b. So, when G0 6∼= G1, we always have b = b′.

To see that the protocol is sound, notice that if G0
∼= G1, then no matter what value b takes, G∗ is a

uniformly random permutation of G0 and a uniformly random permutation of G1, since all permutations of
G0 are also permutations of G1 and vice versa. (Formally, this follows from the fact that Sn is a group.) So,
no matter how a cheating prover P∗ behaves, the bit b is uniformly random and independent of G∗ from his
perspective, and therefore his probability of success is at most 1/2.

1.6 But the verifier “didn’t learn anything that he didn’t already know”!

Notice that the two protocols described above have a very curious property. We saw that the protocols are
sound. So, if the prover manages to guess the bit b (or perhaps guesses many bits b1, . . . , b` obtained by
running this protocol many times in a row, to reduce the soundness error), the verifier has in some sense
“learned” that, e.g., G0 6∼= G1. Certainly, the verifier has been convinced of this fact.

On the other hand, the verifier seems to have “learned nothing that he did not already know.” In
particular, all the prover did was send the bit b′ = b to the verifier. But, the verifier picked b himself! So,
he already knew b! It seems that “the only information that the verifier gained is the fact that the prover
can tell him what he already knew.”

There are many other things that the verifier has not learned. He has not learned “why the graphs are
not isomorphic.” (E.g., perhaps G0 contains some kind of subgraph that G1 does not.) He has not even
learned how to convince someone else that the graphs are not isomorphic! So, this really is quite a different
kind of proof than the one that we’re used to. In particular, we usually think of proofs as transferable—if I
prove something to you and you understand the proof, then you can prove the same statement yourself. (I
guess that even if you do not understand the proof, you can still copy it verbatim.) But this strange kind
of proof is not at all transferable. (Notice that this uses the fact that the verifier is randomized. If I have
proven to you that y is not a quadratic residue by successfully guessing your bit b given z = ybx2, this does
not seem to help you to guess the bit b′ from z′ = yb

′
(x′)2.)

This weird property in which V seems to have “learned nothing at all from a proof” is called the zero-
knowledge property, which we define formally below.

6

2 Zero-knowledge proofs—I might as well be talking to myself

The definition of a zero-knowledge proof is perhaps my favorite in all of cryptography. (I also like the
protocols themselves. I’m kind of a huge fan of zero-knowledge proofs, though I don’t actually work in the
area :).) We want to somehow say that a proof is zero knowledge if “the verifier learns nothing from the
proof except for the fact that the statement is true.” For example, you might want to convince me that the
Riemann Hypothesis is true without revealing your proof. Or, you might wish to convince me that some bit
string y is the output of some one-way function f without revealing the preimage to me. Or, maybe you
want to prove to me that your public key N is really the product of two primes without revealing the two
primes. Or, maybe for some reason you want to convince me that two graphs aren’t isomorphic without
revealing anything else. (Like, you know, at a party or whatever.)

So, we want to prove things “in zero knowledge.” It seems like in order to come up with a good definition
of “zero knowledge,” we might have to define what “knowledge” is or what “learning” is or at least come
close to defining some of these tricky concepts. E.g., how do I argue that “this proof shows that y = f(x) for
some x without letting the verifier learn anything at all about x” without somehow defining what it means
to “learn” something? This is scary the definition of “learning” is the kind of thing that philosophers have
spent millenia debating—not the kind of thing that computer scientists solve in a week.

It turns out that you can mostly avoid this quagmire, by just showing a sufficient condition to imply
that the verifier “gains no knowledge” from an interaction, rather than trying to define what it means to
“gain knowledge.” The brilliant observation of Goldwasser, Micali, and Rackoff [GMR85] is that “you don’t
learn anything from a boring conversation.” (This is my own interpretation; not theirs.) What’s a boring
conversation? Well, Veronica (the verifier) is bored by a conversation with Peter (the prover) if Peter doesn’t
contribute anything. In particular, if Veronica “could have had the same conversation by talking to herself,”
then she is going to be bored and she won’t learn anything. (This kind of reminds me of the expression “like
talking to a brick wall” to describe what it’s like to have a boring conversation.)

Before making this formal, maybe you can see how it applies to our examples of quadratic non-residuosity
and graph non-isomorphism. In both cases, the only thing that Peter did to convince Veronica of something
was to tell her what she already knew (in particular, her bit b). So, Veronica could have had the whole
conversation without Peter! The “only thing that Veronica learned from the conversation was that Peter
could successfully guess her bit b, which is exactly equivalent to the statement that Peter was trying to prove.”
(You’ll notice that I use scare quotes a lot when I’m talking about “knowledge” because “knowledge” is such
a thorny concept.)

To make this definition formal, we introduce the (very clever!) notion of a polynomial-time simulator S.
Intuitively, we say that Π = (P,V) is zero knowledge if there is some polynomial-time simulator S that can
replicate “what V sees in the protocol,” without access to P. E.g., in the two examples that we gave above,
the simulator S is quite simple. For example for graph non-isomorphism, the simulator S samples b ∼ {0, 1}
and π∗ ∼ Sn, and produces the two-message transcript (G∗ := π∗(Gb), b

′ = b). Clearly, the distribution of
(b, π∗, G∗, b′) is identical to the distribution that V sees in an honest run of the protocol.

To make this formal more generally, we introduce the notation viewV〈P(x),V(y)〉 for the view of V in
the interaction 〈P(x),V(y)〉. Formally, the view is a random variable consisting of V’s random coins together
with all messages that V sends and receives (i.e., the transcript of the protocol). In practice, it is often much
easier to think of the view as just “the full list of variables that V sees in the protocol.” E.g., for the graph
non-isomoprism protocol, the view is (b, π∗, G∗, b′). Notice, e.g., that the view includes the bit b, which is in
some sense part of the internal state of V. (In all of our examples, what counts as part of the view of V will
be more-or-less as clear as it is in this case.)

Our simulator will reproduce this random variable. Or, more accurately, our simulator’s output will be
distributed identically to this random variable. (We will later relax the requirement that the distributions
must be identical.)

7

2.1 Honest verifiers

We are now ready for our definition. Our first version of zero knowledge will only consider honest verifiers,
that is, we will only guarantee that the protocol is zero knowledge if the verifier behaves as it is supposed to.
(Sometimes such verifiers are called “honest but curious,” since they behave honestly but are still curious
enough to still try to learn what they can from an interaction with the prover. “Honest but curious” is a
great name. Such verifiers are also sometimes called “semi-honest,” but this is a terrible name.)

Definition 2.1. We say that a proof system Π = (V,P) for a language L ⊆ {0, 1}∗ (the fact that Π is
a protocol for L already implies that V is PPT, and the protocol is complete and sound) is honest-verifier
perfectly zero knowledge if there exists a PPT simulator S such that for all x ∈ L, S(x) is distributed
identically to viewV〈P(x),V(x)〉.

(Notice that we only ask for the above to hold when x ∈ L. One reason for this is that the behavior of
the honest prover P is simply undefined when x /∈ L. Honest provers don’t try to convince us that x is in
the language when it is not :)! You can also think of this as a very clever way of capturing the notion that
“V learns nothing except the fact that x ∈ L.”)

The two protocols that we saw in the previous section are both honest-verifier perfectly zero-knowledge
protocols. Our argument above should make this clear. Indeed, in both cases the simulator just behaves
identically to the verifier and sets b′ = b.

Again, this definition is extremely beautiful and extremely clever. It is worth taking a moment to just
enjoy the definition :).

2.2 Malicious verifiers

But, there is a problem with the above definition in that it implicitly assumes that the verifier behaves
honestly. But, what if the verifier does not behave honestly? We often refer to arbitrary verifiers as malicious
verifiers (or sometimes “possibly malicious” verifiers, which I suppose is a bit more polite).

In fact, both of the protocols that we saw in the previous section are horribly insecure if the verifier is
malicious. I.e., if the verifier deviates from the protocol, then he can learn information that he should not
learn. For example, in the quadratic non-residuosity protocol, suppose that instead of setting z := x2yb, the
verifier chooses z in some other way. Then, the prover will dutifully tell the verifier whether z ∈ QRN . In
other words, the prover P is effectively an oracle for the quadratic residuosity problem. (Or, if you like, an
oracle that decrypts Goldwasser-Micali ciphertexts!) Interacting with this oracle is only zero knowledge if
the verifier happens to behave honestly and only calls the oracle on values of z for which it already knows
the answer. This is a bit silly, since the prover probably does not trust the verifier to behave exactly as he’s
supposed to!

So, we need a stronger definition that considers arbitrary malicious PPT verifiers V∗. Of course, we
can’t hope to create a single simulator S that simulates the view of an arbitrary V∗, since, e.g., different
malicious verifiers V∗ could send different first messages. Instead, we build a simulator SV

∗
that has oracle

access to V∗.

Definition 2.2. We say that a proof system Π = (V,P) for a language L ⊆ {0, 1}∗ (i.e., V is PPT,
and the protocol is complete and sound) is perfectly zero knowledge if there exists a PPT simulator SV

∗

such that for all x ∈ L and all PPT (possibly malicious) verifiers V∗, SV∗(x) is distributed identically to
viewV∗〈P(x),V∗(x)〉.

When we prove security against malicious verifiers, we typically describe the simulator as interacting
with the malicious verifier V∗. We then argue that the interaction with S is identical from the perspective
V∗ to the interaction with P. This is equivalent to the above definition. (We will see this below.)

8

2.3 A protocol for quadratic residuosity

We now present two protocols that are secure against malicious verifiers.2

Our protocols are for graph isomorphism and quadratic residuosity. Of course, we already saw that
these problems are in NP, so they have very simple (even non-interactive!) proofs. But that does not make
it immediately obvious that they have zero-knowledge proofs. (In the next lecture, we will see that every
language in NP has a zero-knowledge proof, after weakening the notion of zero knowledge slightly. In fact,
every language in IP = PSPACE has a zero-knowledge proof, though we will not see that in this class.)

Here is a protocol for quadratic residuosity. Let x be a square root of y modulo N . (Notice that
we give the prover x as input. This isn’t strictly necessary for our formal definition, since the prover
can be computationally unbounded and therefore is perfectly capable of computing a square root x of y
itself. However, it’s nice to notice that, if the prover is given x as input, the prover below actually can be
implemented efficiently. We won’t make a big deal out of this in this course, but it is of course much better
to have a protocol in which the prover can be implemented efficiently. It turns out that this is possible if
and only if we’re trying to prove a language that is in NP—ignoring the minor distinction between NP and
MA.)

Prover Verifier
INPUT: (N, y, x) INPUT: (N, y)
r ∼ Z∗N

z := r2−−→
b ∼ {0, 1}

b←−−
c := xbr−−→

IF c2 = zyb, OUTPUT 1
ELSE, OUTPUT 0

Intuitively, in this protocol, P “commits” to a uniformly random element z ∈ QRN by sending it to V.
V then requests either the square root of z or the square root of yz. (This format of “commit, challenge,
response” is very common in these protocols. Protocols with this form are called “Sigma protocols” because
apparently the three-message format looks kind of like the Greek letter Σ. I don’t really see how it looks
like a Σ. I would have called them “E protocols,” or if I wanted to be fancy “Ξ protocols,” where Ξ is the
Greek letter Xi, pronounced “ksi.”)

Since QRN is a group, if y ∈ QRN , then both elements have a square root, and P can easily respond to
either request. (I.e., the protocol is complete.) On the other hand, if y /∈ QRN , then z and yz cannot both
be in QRN . So, with probability at least 1/2, a malicious prover will not be able to provide the requested
square root. (I.e., the protocol is sound. Beautiful, right?! I really love these protocols.)

So, the above protocol is complete and sound. We now prove that it is zero knowledge. The intuition is
that no matter what a malicious verifier V∗ does, it only learns the square root of a random element in QRN ,
because both z and yz are uniformly random. So, a simulator should be able to sample the square root c first
uniformly at random, then set z such that c2 = zyb to generate the same distribution. Making this formal
takes some work. (It is a nice exercise to simply prove that the above protocol is perfectly honest-verifier
zero knowledge, before reading the more difficult proof below that works even for malicious verifiers.)

Theorem 2.3. The above protocol for quadratic residuosity is perfectly zero knowledge.

2In both cases, our simulators will only run in expected polynomial time. We have been deliberately vague
throughout this course about the precise definition of PPT, and in particular whether a PPT algorithm must always
run in polynomial time or whether it’s sufficient for the expected running time to be polynomial. Anyway, in the
next lecture, we will weaken the definition of perfect zero knowledge that we used above. It is then easy to see how
to convert these simulators to polynomial-time simulators at the expense of moving from perfect zero knowledge to
statistical zero knowledge.

9

Proof. Our simulator S behaves as follows on input (N, y) for y ∈ QRN . (Remember that we only need
to prove the zero-knowledge property when the input string is in the language. This is important.) The
simulator first samples a uniformly random bit b′ ∼ {0, 1} and uniformly random c ∼ Z∗N . (This trick of

sampling things in a different order is very common.) It then sets z := c2/yb
′

and sends this to the (possibly
malicious) verifier V∗, receiving in response some bit b ∈ {0, 1}. If b 6= b′, the simulator simply starts the
whole process over. Otherwise, the simulator responds with c and outputs the resulting view of V∗ in this
interaction. (This ability to “start over” is a very important trick. Intuitively, this is the main advantage of
the simulator—it can simply start over if V∗ does not output what it was hoping for. Cool, right?!)

First, we observe that our simulator runs in expected polynomial time. To see this, it suffices to notice
that Pr[b = b′] = 1/2, regardless of the behavior of V∗. This then implies that the expected number of
times that the simulator needs to start over is simply 1/2 + 1/4 + 1/8 + 1/16 + · · · = 1 (which is certainly
polynomially bounded), so that its expected running time is polynomially bounded. Indeed, since y ∈ QRN ,
z is a uniformly random element in QRN , regardless of b′. Therefore, the bit b must be independent of the
bit b′, and we have Pr[b = b′] = 1/2, as needed.

It remains to argue that the view produced by the simulator is indistinguishable from the view produced
by V∗ interacting with P. To do this, we again notice that z is a uniformly random element in QRN in both
the real protocol and the simulated protocol. Since z is independent of b′ in the simulated protocol (as we
argued above), it follows that whether or not S starts over is independent of z. Therefore, even conditioned
on reaching the end of the protocol, z is uniformly random in QRN .

The bit b is then chosen by V∗, and its distribution is clearly the same in both cases since z has the
same distribution in both cases (even conditioned on b = b′). (Notice that this previous statement is slightly
delicate because b could depend in some complicated way on z. There are many ways to get this proof wrong
:), and in general one should be very careful when working with random variables conditioned on some
event.) Finally, the last message c is fixed given z and b in both cases, so its distribution is also identical in
both cases, and the result follows.

2.4 A protocol for graph isomorphism

Finally, we give a protocol for graph isomorphism that is zero knowledge against malicious verifiers. It is
quite similar to the protocol for quadratic residuosity, and we therefore do not include the analysis. I’m
mostly just including it because it’s another pretty protocol :).

Let π be a bijection such that π(G1) = G0. We write π ◦ π′ for the map obtained by composing π and
π′, and we define π1 := π and π0 to be the identity.

Prover Verifier
INPUT: (G0, G1, π) INPUT: (G0, G1)
π∗ ∼ Sn

G∗ := π∗(G0)
−−→

b ∼ {0, 1}
b←−−

π′ := π∗ ◦ πb

−−→
IF π′(Gb) = G∗, OUTPUT 1
ELSE, OUTPUT 0

References

[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In STOC, 2016. 6

[GMR85] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems.
In STOC, 1985. 7

10

	Computational Proof Systems
	NP review
	Interactive Proofs
	Why the verifier must be randomized
	Example: quadratic non-residuosity
	Example: graph non-isomorphism
	But the verifier ``didn't learn anything that he didn't already know''!

	Zero-knowledge proofs—I might as well be talking to myself
	Honest verifiers
	Malicious verifiers
	A protocol for quadratic residuosity
	A protocol for graph isomorphism

