
Fully Homomorphic Encryption!!
Noah Stephens-Davidowitz

June 9, 2023

1 Fully Homomorphic Encryption
1.1 Homomorphisms of encryption schemes
Remember that all of the encryption schemes that we’ve seen so far have some sort of homomor-
phism or malleability. For example, in the Goldwasser-Micali scheme, a ciphertext has the form
ymx2 mod N , where y ∈ QRN is a quadratic non-residue. So, if we know two ciphertexts c1 :=
ym1x21 mod N and c2 := ym2x22 mod N (and the public key), we can compute c3 := c1 · c2 mod N =
ym1⊕m2x23 mod N , which is an encryption of m1⊕m2.1 More generally, suppose that we know many
ciphertexts c1 := ym1x21 mod N, . . . , cℓ := ymℓx2ℓ mod N which are encryptions of the plaintexts
m1, . . . ,mℓ ∈ {0, 1}. Then, we can compute c∗ := c1c2 · · · cℓ mod N = ym1⊕m2⊕···⊕mℓ(x∗)2 mod N ,
which is an encryption of the plaintext m1 ⊕ · · · ⊕mℓ.

More generally still, a homomorphism of an encryption scheme is an efficient algorithm that takes
as input (possibly the public key and) ciphertexts c1, . . . , cℓ, which are encryptions of the plaintext
m1, . . . ,mℓ ∈ {0, 1}, and outputs a ciphertext cf corresponding to the plaintext f(m1, . . . ,mℓ) for
some function f : {0, 1}ℓ → {0, 1}. Of course, some functions f are not very interesting. E.g., the
function f(m1,m2, . . . ,mℓ) = m1 is not very interesting in this context, nor is f(m1, . . . ,mℓ) = 1.
But, the function f(m1, . . . ,mℓ) = m1 ⊕ · · · ⊕mℓ from above is interesting.

When we do this, we refer to it as homomorphically evaluating f , and when there is a non-trivial
f for which this is possible, we say that the encryption scheme is homomorphic. In the special case
when ℓ = 1, we instead say that the scheme is malleable. Homomorphisms are potentially a security
threat (though a homomorphic encryption scheme can still be semantically secure, it might not be
good if an adversary can produce an encryption of m1 ⊕m2 given encryptions of m1 and m2…),
but for some applications, they are also extremely useful.

1.2 “Any efficiently computable function”—representing functions with circuits
Below, we will build a fully homomorphic encryption scheme, that is, an encryption scheme that
allows us to efficiently homomorphically compute any efficiently computable function f : {0, 1}ℓ →
{0, 1}. (Notice that we need to restrict ourselves to efficiently computable functions! In particular,
the complexity of the procedure of encrypting, applying the homomorphism, and then decrypting,
must be at least the complexity of f .)

1Here, x3 = yx1x2 mod N if m1 = m2 = 1. Otherwise, x3 = x1x2 mod N . In particular, while it may look like we
get an encryption of m1 +m2, rather than m1 ⊕m2 in the above scheme, notice that the plaintext m is only defined
modulo 2 in the Goldwasser-Micali scheme. I.e., if we “encrypt m + 2 to get ym+2x2 mod N ,” this is equivalent to
encrypting m using ym(xy)2 mod N .

1

x1 x2 x3 x4

⊕ ∧

∨ ⊕

⊕

⊕

Figure 1: A circuit with four-bit input and depth 3. If f is the function computed by this circuit,
then you can check that, e.g., f(1, 0, 1, 0) = 1 and f(1, 1, 1, 1) = 0. (Thanks to Sasha Golovnev for
the figure.)

To formalize this, we need to take a brief detour to decide how we will even represent an
arbitrary efficiently computable function f . For our purposes, it will be convenient to assume that
f is described as a circuit. Formally, a circuit is a directed acyclic graph, where every node has
in-degree 2, except for n special input nodes, which have in-degree zero. All non-special nodes are
labeled with a gate G : {0, 1}2 → {0, 1}, e.g. ⊕ or AND or OR or NAND. One of these nodes is
designated as the output. The value of the circuit on input x1, . . . , xn is computed as follows. We
assign the values x1, . . . , xn ∈ {0, 1} to the input vertices, and then do the following repeatedly.
Label each vertex whose parents do have assignments, b1, b2 ∈ {0, 1} with G(b1, b2), where G is the
gate corresponding to the vertex. After doing this repeatedly, we will eventually assign a value to
the output node. This is the output of the circuit.

The depth of a circuit is the length of the longest path from an input vertex to the output
vertex. See Figures 1 and 2.

But, the details of this model of computation will be largely unnecessary from our perspective.
Intuitively, a circuit is just a “bit-level description” of a function. It can be interpreted as describing
a computation in the form “first take xi and xj and XOR them together; then take the result y
and AND it with xk; then take that same result y and XOR it with x1; then take the results of
the previous two operations and take the OR of them…” The Cook-Levin theorem tells us that any
efficient algorithm can be represented as a polynomial-sized circuit, and that this representation
can be computed efficiently.

Furthermore, the operations ⊕ and AND are a complete set of gates. That is, any circuit can be
efficiently converted into an equivalent circuit where all gates are either AND or ⊕. (The way that
I described it, this isn’t exactly true because using only AND and ⊕, we cannot, e.g., represent any
function f such that f(0, . . . , 0) = 1. But, we always assume that we have access to constants—that
is, we can include an additional input vertex that is always set to zero, and an additional input
vertex that is always set to one. It is in this model that AND and ⊕ are universal.) So, we will
assume that our functions are represented by circuits consisting entirely of AND and ⊕ gates. (It
is sometimes convenient to think of AND gates as multiplication gates, and we do so quite a bit
later.)

2

x1 x2 x3

⊕ ∧

∨ ⊕

⊕

Figure 2: A circuit that takes 3 bits as input and has depth 3. If f is the function computed by this
circuit, then you can check that, e.g., f(1, 0, 1) = 0 and f(1, 1, 1) = 0. (Thanks to Sasha Golovnev
for the figure.)

1.3 Definition of fully homomorphic encryption
A fully homomorphic encryption scheme is an encryption scheme that is augmented with an addi-
tional efficient algorithm Eval, which takes as input a description of a function f (as a circuit, as
described above) and ciphertexts c1 = Enc(m1), . . . , cℓ = Enc(mℓ) (and possibly the public key as
well), and outputs a single ciphertext c∗ that encodes f(m1, . . . ,mℓ), i.e., Dec(c∗) = f(m1, . . . ,mℓ).

Formally, we will have two separate definitions, one for secret-key encryption and one for public-
key encryption. We take the message space to be {0, 1} for convenience.

Definition 1.1. A fully homomorphic secret-key encryption scheme consists of four efficient algo-
rithms (Gen,Enc,Dec,Eval) with the following properties.

• (Gen,Enc,Dec) is a correct and semantically secure secret-key encryption scheme with message
space {0, 1}.

• (Homomorphism.) For any function f : {0, 1}ℓ → {0, 1} and any plaintexts m1, . . . ,mℓ ∈
{0, 1},

Pr
k←Gen(1n)

[c1 ← Enc(k,m1), . . . , cℓ ← Enc(k,mℓ), Dec(k,Eval(f, c1, . . . , cℓ)) = f(m1, . . . ,mℓ)] = 1 .

• (Compactness.) For any function f : {0, 1}ℓ → {0, 1} and any m1, . . . ,mℓ ∈ {0, 1},

Pr
k←Gen(1n)

[c1 ← Enc(k,m1), . . . , cℓ ← Enc(k,mℓ), c
∗ ← Eval(f, c1, . . . , cℓ), |c∗| = |c1| = · · · = |cℓ|] = 1 ,

where |c∗| is the bit length of c∗. In other words, the length of the output of Eval is the same
as the length of the output of the encryption algorithm.

The last condition, compactness, might seem a bit strange. But, something like this is necessary
to make the definition non-trivial. For example, let (Gen,Enc,Dec) be any semantically secure
secret-key encryption scheme, and consider the algorithm Eval(f, c1, . . . , cℓ) = (f, c1, . . . , cℓ). If

3

we modify the decryption algorithm to Dec′ such that Dec′(f, c1, . . . , cℓ) = f(Dec(c1), . . . ,Dec(cℓ))
(and Dec′(c) = Dec(c)), then the scheme (Gen,Enc,Dec′,Eval) satisfies all of the other requirements
for a fully homomorphic cryptosystem. But, it is not very interesting, precisely because it is not
compact.

By requiring compactness, we are intuitively requiring the Eval algorithm to “do something
interesting,” since it cannot, e.g., simply write down the function f if the description of f is too
large. (Compactness also implies that there is a fixed polynomial p(n) such that Dec runs in time
at most p(n) when called on the output of Eval, independent of f . E.g., if f can only be computed
in time n100 · p(n), then “Eval must do most of the computation itself.”)

One could imagine various stronger definitions. E.g., one could demand that c∗ “has the same
form as ci” (e.g., that c∗ is computationally indistinguishable from Enc(k, 0)). The notion of
function hiding is one way to formalize this, and the scheme that we show here will satisfy a very
weak notion of function hiding. But, the above definition is simpler and still interesting. There are
weaker notions too: e.g., one can simply require that there be some fixed polynomial bound on the
length of c∗ (independent of ℓ and f).

The public-key definition is essentially the same except that (1) the underlying encryption
scheme (Gen,Enc,Dec) is now a public-key scheme; and (2) we now explicitly give the Eval algorithm
access to the public key.

Definition 1.2. A fully homomorphic public-key encryption scheme consists of four efficient al-
gorithms (Gen,Enc,Dec,Eval) with the following properties.

• (Gen,Enc,Dec) is a correct and semantically secure public-key encryption scheme with message
space {0, 1}.

• (Homomorphism.) For function f : {0, 1}ℓ → {0, 1} and any plaintexts m1, . . . ,mℓ ∈
{0, 1},

Pr
(sk,pk)∼Gen(1n)

[ci ← Enc(pk,mi), Dec(sk,Eval(pk, f, c1, . . . , cℓ)) = f(m1, . . . ,mℓ)] = 1 .

• (Compactness.) There exists some polynomial p(n) such that for any function f : {0, 1}ℓ →
{0, 1} and any m1, . . . ,mℓ ∈ {0, 1},

Pr
(sk,pk)∼Gen(1n)

[ci ← Enc(pk,mi), c
∗ ← Eval(pk, f, c1, . . . , cℓ), |c∗| = |ci|] = 1 ,

where |c∗| is the bit length of c∗.

Remark (Why only one-bit output?). Notice that, while we formally defined the function f :
{0, 1}ℓ → {0, 1} to output only a single bit, this immediately extends to functions F : {0, 1}ℓ →
{0, 1}k that output many bits. In particular, we can define F := (f1, f2, . . . , fm), so that fi computes
the ith bit of F . Notice that the fi are still efficiently computable, and by running Eval with
f1, . . . , fm, we can homomorphically evaluate F . (Of course, this might not be the most efficient
way to do this.) Therefore, this definition is essentially equivalent to the definition that allows f
to output many bits. (On the homework, we use the many-bit definition.)

4

1.4 Use case: delegation
Suppose there is a giant company named, e.g., Nile, which sells a service called Nile Web Services
(NWS), which allows customers to use their computational power. In particular, customers can
upload their data M = (m1, . . . ,mℓ) ∈ {0, 1}ℓ (e.g., their genome or a list of their clients, repre-
sented as some bit string) to NWS’s servers, specify some function f : {0, 1}ℓ → {0, 1}, and receive
in response f(M).

Of course, we might not be comfortable just sending M in the clear to NWS! E.g., if M
consists of sensitive medical records. Fortunately, with FHE, we do not have to. Specifically,
if (Gen,Enc,Dec,Eval) is a fully-homomorphic encryption scheme (it does not matter in this case
whether it is a public-key scheme or a secret-key scheme), then we can instead send c1 ← Enc(m1), . . . , cℓ ←
Enc(mℓ) to NWS, together with f . NWS can then respond with c∗ ← Eval(f, c1, . . . , cℓ), and we
can simply decrypt c∗ to get f(M).

Notice that this would be useless without compactness! In particular, for this to be useful, it
must be the case that encrypting M and decrypting c∗ are more efficient than computing f(M)
ourselves. Compactness (together with the fact that Dec is efficiently computable) guarantees that
this is the case for a sufficiently complicated efficiently computable function f (e.g., a function that
can be computed in time n100 but not n99).

This is called delegation. In fact, there are many more considerations that go into delegation
that we will not get into here. E.g., how do we confirm that the result that we get is really f(M)?
Perhaps NWS was lazy (or malicious) and instead computed f ′(M)! (We could compute f(M)
ourselves to check, but this is not very useful. Instead, we would like some way to confirm the
computation in time that is independent of the complexity of f .)

2 Constructing FHE! GSW encryption
Now that we have the definition, we can try to actually construct fully homomorphic encryption.
I hope it’s clear that this task is difficult! It was originally suggested by Rivest, Adleman, and
Dertouzos [RAD78] all the way back in 1978. But, the first construction was only found in 2008,
by Craig Gentry [Gen09]—30 years later. (It’s my understanding that many people thought that
this was impossible before Gentry’s work, though I might be wrong about that.)

Gentry’s original construction was rather complicated, so we will see a more modern form due
to Gentry, Sahai, and Waters [GSW13], called GSW encryption. The construction is based on the
LWE assumption that we saw in the previous lecture. In fact, the encryption scheme itself (ignoring
the Eval function for now) is not too different from the Regev encryption scheme that we saw in
that lecture. There are two main differences:

• While Regev ciphertexts were vectors, GSW ciphertexts are matrices. You can think of GSW
ciphertexts as essentially concatenations of many Regev ciphertexts of the same underlying
plaintext (though this is not strictly true because of the other difference), in the same way
that a matrix can be viewed as a concatenation of many vectors.

• Instead of multiplying the message by ⌊q/2⌋ like we did in Regev encryption, we will multiply
the message by some very cleverly chosen gadget matrix G.

First, we will describe the scheme without specifying G, and without specifying Eval. Then, we
will work to construct Eval and derive the properties of G that we need in the process.

5

The scheme has public parameters q, m, N , σ ≪ q/m and G ∈ ZN×(n+1)
q where N := (n +

1)⌊log q⌋ (all of which depend on the security parameter n).

• Gen(1n): Sample s ∼ Zn
q , A ∼ Zm×n

q , and e ∼ [−σ, σ]m.

For convenience, we take sk := t :=

(
s
−1

)
∈ Zn+1

q (i.e., we add an extra coordinate −1 to

the secret s) and public key pk := B := (A,As+ e mod q) ∈ Zm×(n+1)
q (i.e., we add an extra

column As + e to the matrix A). This is exactly the same as Regev encryption, just with
some extra notation. Notice that we have set things up so that Bt = −e mod q, i.e., the
secret key is a vector t such that Bt mod q is small.

• Enc(pk, µ ∈ {0, 1}): Sample R ∼ {0, 1}N×m and output C := RB + µG ∈ ZN×(n+1)
q .

• Dec(sk,C): Compute d := Ct ∈ ZN
q . Output 1 if at least one of the coordinates of d is larger

than, say, q/10 in absolute value, and 0 otherwise.

To understand correctness, notice that d = Ct = RBt + µGt = −Re + µGt mod q. Notice
that the coordinates of Re are of size at most σm ≪ q. Therefore, for the scheme to be correct,
we need some guarantee that at least one coordinate in Gt mod q is always larger than, e.g., q/5.
Since the last coordinate of t is −1 by definition, it suffices if G has at least one row of the form
(0, 0, 0, . . . , 0, r) for some r ≈ q/2. Our G will in fact satisfy this, so the scheme is correct.

Furthermore, notice that, for correctness, we did not need R to have coordinates in {0, 1}. We
could have instead taken, e.g., R ∈ {−B, . . . , B}N×m for any B ≪ q/(σm). I.e., R only needs to
be “small.” This will be important soon.

The security proof for this scheme, assuming Decisional LWE, is identical to the proof for Regev
encryption. In particular, when we proved security of the Regev scheme, it really came down to
proving that RB is computationally indistinguishable from a uniformly random matrix in ZN×(n+1)

q

(though in the Regev case we only looked at a single row, i.e., we took N = 1). And, this is clearly
enough to imply security here.

2.1 Thinking about Eval
Now, let’s start to think about how the Eval function could possibly behave. Specifically, let’s
see how to take two ciphertexts C1 := R1B + µ1G mod q and C2 := R2B + µ2G mod q and
use them to compute C⊕ := R⊕B + (µ1 ⊕ µ2)G mod q for some “small” matrix R⊕ and C× :=
R×B + µ1µ2G mod q for some “small” matrix R×. Intuitively, if we can accomplish this, then we
might hope to compute an arbitrary circuit with ⊕ and AND = × gates. (It is not quite sufficient
to show how to compute such a C⊕ and C×, because in general we have no guarantee that we
can repeat this procedure many times. In particular R can get larger each time we apply these
operations, and eventually it could become too large to decrypt. This will be a major issue that
we will need to deal with later.)

First, consider C+ := C1 +C2. Notice that C+ = (R1 +R2)B + (µ1 + µ2)G = R+B + (µ1 +
µ2)G mod q. This is kind of like what we want. In particular, R+ is not much larger than R1

and R2, so we can declare that to be “small.” But, µ1 + µ2 is not necessarily the same as µ1 ⊕ µ2.
However, notice that µ1 ⊕ µ2 = µ1 + µ2 − 2µ1µ2. So, suppose we already knew how to compute

6

C×, then we could compute

C⊕ := C+ − 2C× = (R+ − 2R×)B + (µ1 ⊕ µ2)G = R⊕B + (µ1 ⊕ µ2)G ,

where R⊕ := R+ − 2R× is not much larger than R+ and R×.
So, “all” we need to do is to show how to compute C×. We will then worry about how quickly

R grows when we perform these operations, to try to allow ourselves to perform these operations
many times.

2.2 Choosing G wisely
Given what we’ve done so far, I think it’s natural to assume that C× will have the form C× =

IG(C1)C2 for some function IG : ZN×(n+1)
q → ZN×N

q . (The standard notation for what I’m calling
IG is G−1, but this notation has some problems. In particular, the standard notation makes it look
like IG is a linear function, but it is not.)

Let’s see what properties we want IG to have. Expanding out the definition of C×, we have

C× = IG(C1)R2B + µ2IG(C1)G .

So, it would suffice if IG had two properties: (1) IG(C1) should be “small,” e.g., IG(C1) ∈
{0, 1}N×N ; and (2) IG(C1)G = C1 = R1B + µ1G. I.e., IG is kind of like an inverse of G, in the
sense that IG(C)G = C. Then, we would have

C× = (IG(C1)R2 + µ2R1)B + µ1µ2G = R×B + µ1µ2G ,

as needed.
It turns out that there is a very natural function IG and matrix G ∈ ZN×(n+1)

q that together
satisfy these properties. We take N := (n + 1)(⌊log2 q⌋ + 1), and we take IG to be the “bit
decomposition function.” I.e., recall that each row of C1 is a vector in Zn+1

q . IG operates on each
such row, taking such vectors and converting them into vectors in {0, 1}N by writing out each
coordinate in binary. (Conventionally, we write the lower-order bits first in this representation.)
E.g., if q = 15 and n = 2, then

IG(2, 5, 9) = (0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1)

because 2 maps to (0, 1, 0, 0), 5 maps to (1, 0, 1, 0) and 9 maps to (1, 0, 0, 1).

7

Then, the gadget matrix G is given by

G :=

1 0 0 · · · 0
2 0 0 · · · 0
4 0 0 · · · 0
8 0 0 · · · 0
...

...
...

2⌊log q⌋ 0 0 · · · 0
0 1 0 · · · 0
0 2 0 · · · 0
...

...
...

0 2⌊log q⌋ 0 · · · 0
...

...
...

0 0 0 · · · 1
0 0 0 · · · 2
...

...
...

0 0 0 · · · 2⌊log q⌋

(If you are comfortable with tensor products, then G := I ⊗ g, where g := (1, 2, . . . , 2⌊log q⌋) and
I is the identity matrix.) Notice that IG(C1)G = C1. (Notice also that G has a row of the form
(0, . . . , 0, 2⌊log q⌋−1), which we needed earlier for correctness. In some sense, IG is an inverse of G,
but notice that IG is not a linear function, so it is not what we would normally think of as an
inverse of G.) In other words, G is the linear transformation that maps bit representations to
integers.

In particular,

C× = (IG(C1)R2 + µ2R1)B + µ1µ2G = R×B + µ1µ2G mod q .

Since IG(C1) ∈ {0, 1}N×N is small and R2 ∈ {0, 1}N×m is small, the matrix R× is “small.”
Specifically, the coordinates of R× = IG(C1)R2 lie in the interval [−N − 1, N + 1]. We will
therefore still be able to decrypt correctly as long as N ≪ q/(mσ). Below, we will pay much more
attention to the size of R×.

2.3 Controlling the noise and leveled fully homomorphic encryption
So, we have shown how to homomorphically compute a single XOR operation or a single AND
operation while maintaining the correctness of the ciphertext. In order to compute an entire circuit,
we would like to perform these operations repeatedly. E.g., we would like to homomorphically
compute the XOR of C1 and C2 to obtain C⊕, and the AND of C3 and C4 to obtain C×, and then
we might wish to, e.g., homomorphically compute the AND of C⊕ and C×, and so on.

Our analysis above shows that, if we start out with fresh ciphertexts C1,C2 and compute C×
or C⊕, these operations work. But, after we have applied these operations, the size of R has
grown. Remember that our decryption algorithm converts a ciphertext C = RB + µG mod q into
Re + µGt mod q. We call the term Re the “noise,” and we can decrypt if the coordinates of the
noise are all in the range, e.g., {−q/10, . . . , q/10}.

8

We therefore want to control the size of the noise, and in particular, to keep the noise small
even if we perform many homomorphic operations like the ones described above. To that end, let’s
use the notation ∥R∥∞ := maxi,j |Ri,j |, i.e., ∥R∥∞ is the maximal absolute value of a coordinate
in R. Notice that we can decrypt the ciphertext RB + µG if ∥R∥∞ ≤ q/(10mσ). So, we want to
study ∥R⊕∥∞ and ∥R×∥∞, where R⊕ := R1 +R2 − 2R× and R× := IG(C1)R2 +R1.

Recalling that IG(C1) ∈ {0, 1}N×N , we have

∥R×∥∞ ≤ N∥R2∥∞ + ∥R1∥∞ ,

and
∥R⊕∥∞ ≤ ∥R1∥∞ + ∥R2∥∞ + 2∥R×∥∞ ≤ 3∥R1∥∞ + (2N + 1)∥R2∥∞ .

So, the noise increases by a factor of roughly N ≈ n log q for every operation. Therefore, if we
need to evaluate a circuit of depth d, the noise will grow by a factor of roughly Nd ≈ (n log q)d. This
means that we can homomorphically evaluate any circuit of depth d such that (n log q)d ≪ q/(mσ).

As it turns out, LWE is not secure if q/σ ≳ 2n/poly log(n). This means that with this approach, we
can’t hope to handle d ≳ n/poly log(n). In other words, we can only compute circuits with slightly
sublinear depth in the security parameter n. This is called leveled fully homomorphic encryption,
or sometimes somewhat homomorphic encryption, and it is already very useful! Many functions of
interest can be written as low-depth circuits, and we can always just increase the security parameter
n if we want to compute deeper circuits. However, this is not quite an FHE scheme because of this
subtle restriction on the depth.

2.4 Going from leveled FHE to FHE using bootstrapping!
To get true fully homomorphic encryption, we need one last idea, called bootstrapping. This idea
is due to Gentry. It is also completely insane!

Gentry’s idea was to compute the decryption function homorphically! Specifically, for a cipher-
text C, let fC(sk) := Dec(sk,C). Notice that we think of C as hard-wired into the function fC
and sk as the input. This is important!

Now, let C∗1 := Enc(pk, sk1), . . . ,C∗ℓ := Enc(pk, skℓ) be encryptions of the bits of the secret
key! Then, consider what happens when we run C ′ := Eval(fC ,C∗1, . . . ,C

∗
ℓ). Take a second to

stare at this, and you will see that Dec(sk,C ′) = Dec(sk,C). In other words, C ′ is an encryption
of the same plaintext as C! In particular, if C := RB + µG with ∥R∥∞ < q/(10σm), then
C ′ := R′B+µG mod q for the same plaintext µ. The process of converting a ciphertext to another
in this way is known as bootstrapping.

But, how big is R′? Well, C∗1, . . . ,C
∗
ℓ are fresh encryptions (i.e., they are the direct output

of the encryption algorithm; not Eval), so they all have noise level ∥R∗∥∞ ≤ 1. We then homo-
momorphically evaluated the decryption function fC on these. So, our final noise level will be
∥R′∥∞ ≈ (n log q)dDec , where dDec is the depth of the decryption circuit fC . Notice that this noise
level does not depend on the noise level of C! So, if C has noise larger than (n log q)dDec , then
bootstrapping gives us a lower-noise ciphertext C ′ of the same plaintext!

Gentry made the (crazy!) observation that the decryption function fC(sk) is relatively simple—
it just multiplies sk = t by C modulo q and checks if the result is big or small. He was therefore
able to show that the depth dDec of a circuit needed to compute this function can be made small
enough to make this noise level manageable.

9

Therefore, in order to compute an arbitrarily deep circuit f , we can do the following. In addition
to the standard public key B, the key generation algorithm also releases C∗1, . . . ,C

∗
ℓ , encryptions

of the bits of the secret key. To homomorphically evaluate f , we start to compute the circuit as
described in the previous section until we reach depth d for which Nd ≈ q/(10σm)—i.e., until we
reach a depth where the noise is nearly the largest noise that can still be decrypted. Once we reach
that depth, we run Gentry’s crazy bootstrapping procedure on the ciphertexts corresponding to
each gate at that depth, giving us new encryptions of the same plaintexts with smaller noise level!
Then, we continue to compute the circuit on the new ciphertexts until the noise level approaches
q/(10σm), at which point we again run the bootstrapping procedure. Proceeding in this way, we
eventually compute all of f , without ever letting the noise grow larger than q/(10σm)!

Not so fast: circular security. Notice that, in order for this bootstrapping process to work,
the public key must include C∗1, . . . ,C

∗
ℓ , which are encryptions of the secret key! Unfortunately,

we do not know how to prove the security of this new scheme under the LWE assumption. Instead,
we have to assume what’s known as circular security, which says that, well, the scheme remains
secure even if we publish encryptions of the bits of the secret key. (With some work, one can write
this as an assumption that looks like a funny variant of LWE.) As far as we know, this is true, but
we do not know how to prove that this strange assumption holds under LWE.

Better leveled FHE from bootstrapping. The form of leveled FHE that we achieved above is
rather unsatisfying because it fails at some depth d, which depends only on n, σ, q, and m. It would
be better if we could choose any depth d = poly(n) that we like and generate (sk, pk) depending on
d such that we can homomorphically evaluate any circuits of depth d (but no further). This isn’t
exactly fully homomorphic encryption because we can’t compute any circuit, but it’s pretty close.

To do this, we can again use bootstrapping, except instead of just having one public key pk
and one secret key sk, we generate many (sk1, pk1), . . . , (skd, pkd). We also include in the public
key C∗i,1 := Enc(pki+1, ski,1), . . . ,C

∗
i,ℓ := Enc(pki+1, ski,ℓ) for all i. I.e., we encrypt the secret key

ski using the public key pki+1. This lets us get around the circular security issue because ski is
unrelated to pki+1. So, a simple hybrid argument shows that the resulting scheme is semantically
secure.

Then, to homomorphically evaluate a circuit of depth at most d, we do the same bootstrapping
trick as before, except now the first time that we bootstrap we use C∗1,1, . . . ,C

∗
1,ℓ. Notice that

this will convert our ciphertexts from encryptions under pk1 to encryptions under pk2. Then, the
second time that we bootstrap, we use C∗2,1, . . . ,C

∗
2,ℓ, etc. In general, after the ith bootstrap, we

will have encryptions under the pki+1, and the noise level will still remain relatively small.
This allows us to have arbitrarily good leveled fully homomorphic encryption from LWE—

without needing circular security and without needing to mess with the security parameter n.

2.5 A note on (im)practicality
While the above scheme is polynomial-time computable, it is not very practical. In practice, we
must take n ≫ 100 in order to have any hope of security, and q must be quite large as well. This
means that we will need millions of bits to represent the ciphertext C corresponding to a single
plaintext bit µ.

10

In particular, this means that computing f homomorphically will be slower than computing f
directly by a factor of over one million. It’s hard to imagine a situation in which one would want
to delegate such a computation with such large overhead.

And, the bootstrapping procedure requires us to homomorphically compute a function fC con-
sisting of millions of gates. That’s… not ideal.

Fortunately, there are tricks to make this much more efficient. Perhaps the most interesting
trick is to use a variant of the above scheme in which many of the matrices, like A and R, are not
chosen uniformly at random, but are instead chosen to be a random matrix from some family with
a succinct description. If done properly, this idea leads to the notion of Ring-LWE, and it ends up
saving us a factor of roughly n in the size of ciphertexts and in the running time of the encryption,
decryption, and evaluation algorithms. Another important trick is to pack more than one bit into
every ciphertext.

With enough tricks, FHE becomes quite practical—so much so that you can find many different
implementations online, including implementations of this crazy bootstrapping idea.

References
[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009. 5

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encription from Learning
with Errors: conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO,
pages 75–92, 2013. 5

[RAD78] R Rivest, L Adleman, and M Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, Academia Press, pages 169–179, 1978. 5

11

	Fully Homomorphic Encryption
	Homomorphisms of encryption schemes
	``Any efficiently computable function''—representing functions with circuits
	Definition of fully homomorphic encryption
	Use case: delegation

	Constructing FHE! GSW encryption
	Thinking about Eval
	Choosing G wisely
	Controlling the noise and leveled fully homomorphic encryption
	Going from leveled FHE to FHE using bootstrapping!
	A note on (im)practicality

