
Signatures

Noah Stephens-Davidowitz

June 9, 2023

1 Public keys!

We have now seen how Alice and Bob can communicate both authentically and securely. However,
we have mostly glossed over one gigantic assumption that we made: that Alice and Bob somehow
can manage to share a secret key. For both SKE and MACs to be useful, Alice and Bob need to
somehow first exchange some bit string k, which they must keep secret from Eve. Of course, this
is still quite useful in many situations because once they have figured out how to agree on a shared
key k (e.g., by meeting in person), Alice and Bob can use this secret key to communicate securely
as much as they like on any channel (e.g., over the internet while Alice is traveling).

At first, it might seem like a shared secret key is necessary. For example, if Alice and Bob want
to send messages in a way that prevents Eve from reading them, how can they possibly do this
unless they have some information that Eve does not know? (Since we’re going to see that this
is in fact possible, it’s a little difficult for me to try to convey the intuition that one might have
suggesting that it’s not possible, but I hope you recognize that it does seem kind of ridiculous that
one should be able to do anything interesting without a shared secret key.)

Of course, if shared secret keys really were necessary for secure communication, then the internet
would be a very different place. We might, for example, need to get a secret key sent to us in the
mail before we can set up an account with a website for the first time! Or, maybe we would all
rely on some central authority (the government? a large corporation?) that shares secret keys with
everyone and facilitates communication.

1.1 A little history

The first people to publicly consider that something better might be possible were Whitfield
(“Whit”) Diffie and Martin Hellman, in their extraordinarily influential and prescient paper “New
directions in cryptography” from 1976 [DH76]. (That is an extremely bold title for a paper, and it
is actually justified.) They considered the possibility of both private and authenticated communi-
cation without a shared secret and suggested some approaches (and, just for good measure, they
mentioned other possible cryptographic primitives, such as obfuscation). They very deservedly won
the Turing award for this achievement.

However, it turns out that James Ellis, a cryptographer working for the British spy agency
GCHQ, came up with this idea all the way back in 1970. Ellis and his colleagues discovered many
of the ideas now used in public-key cryptography long before they were discovered publicly—all
of which remained classified until 1997. In particular, Clifford Cocks discovered RSA encryption
in 1973. (They called it “non-secret encryption,” which is a horrible name in my opinion.) And,

1

Malcolm Williamson discovered Diffie-Hellman key agreement in 1974. (We of course do not know
whether they discovered other things as well that are still classified.)

1.2 Splitting the key in two

One of the ideas that Diffie and Hellman had was to observe that Alice and Bob play different roles
in our stories. E.g., when Alice sends a message privately to Bob, Alice encrypts the message, while
Bob decrypts the message. For authentication, Alice tags a message, and Bob just checks the tag.

So, since Alice and Bob do different things, maybe there’s a way to make this work in which
they have different keys as well? In particular, instead of requiring Alice and Bob to share some k,
we require one of them to have a secret key sk and the other to have a public key pk. The public
key is, well, public—in the sense that even the adversary Eve gets to know the public key.

2 Signatures

The public-key counterpart of a MAC is a digital signature. (I think that they are formally called
digital signatures—rather than just signatures—to distinguish them from the little squiggly things
that we put on contracts and checks. When there is no risk of confusion, we typically just call
them signatures, as the term “digital” just sounds rather archaic to me. When do we talk about
anything in this class that is not digital?) In keeping with the intuition described above, the key
observation here is that Alice and Bob do different things when Alice sends an authenticated method
to Bob. Specifically, Alice produces a signature, and Bob verifies it. Notice that we definitely do
not want the adversary to be able to produce signatures on her own. However, it might be okay if
the adversary can verify signatures. So, maybe we can come up with a definition in which Alice
and Bob have different pieces of information, so that only Alice is able to produce signatures, but
anyone at all can verify them.

So, yeah, let’s do that :). As before, we first define correctness and then worry about security.

Definition 2.1. A digital signature scheme consists of three PPT algorithms (Gen,Sign,Ver) with
the following properties.

1. Gen takes as input 1n and outputs two keys sk, vk. sk is called the secret key (or sometimes
the signing key), and vk is called the verification key (or sometimes the public key, in which
case it is written pk).

2. Sign takes as input a secret key sk and a plaintext m and outputs a signature σ.

3. Ver takes as input a verification key vk, a plaintext m, and a signature σ′ and outputs either
1 or 0 (i.e., either “valid” or “invalid”).

4. (Correctness.) For any n and any plaintext m,

Pr
(sk,vk)←Gen(1n)

[Ver(vk,m,Sign(sk,m)) = 1] = 1 .

Notice that the above definition is identical to the definition of a MAC except that we have
“divided the MAC key k into two keys sk, vk”—one used by the signing algorithm and the other
used by the verification algorithm. Again, we will think of vk as public, e.g., Alice might publish it

2

on her website, while sk is of course secret. In other words, signatures are “publicly verifiable,” in
the sense that we think of the information needed to verify the signature (the verification key) as
public.

2.1 Security

Our security notion for a digital signature will be the same basic notion that we used for a MAC,
i.e., existential unforgeability against adaptive chosen message attacks (EUACMA), as defined in
the game below. The one crucial difference between this game and the MAC game is that in this
game the adversary is given access to vk. This formally captures the notion that vk is public. In
particular, what does it mean from a security perspective that “it is okay to release vk publicly.”
Well, it means we’re even willing to give vk to our worst enemy—the adversary!

Adversary Challenger
INPUT: 1n INPUT: 1n

(sk, vk)← Gen(1n)
vk←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i = 1
DO UNTIL the adversary aborts

mi ∈ {0, 1}n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Sign(sk,mi)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i++
END DO

m′, σ′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
IF m′ /∈ {m1, . . . ,m`} AND Ver(vk,m′, σ′) = 1,

OUTPUT “WIN”

Definition 2.2. A digital signature is secure (against EUACMA) if for any PPT adversary A
there exists a negligible ε(n) such that the probability that A wins the above game is at most ε(n).

As in the case of MACs, we can write this definition without explicitly describing the above
protocol by using oracles. (To be clear, these two definitions are exactly the same. We are just
showing different notation for the same thing.)

Definition 2.3. A digital signature is secure if for any PPT adversary A there exists a negligible
ε(n) such that

Pr
(sk,vk)←Gen(1n)

[(m′, σ′)← ASign(sk,·)(1n, vk), m′ /∈ Q and Ver(vk,m′, σ′) = 1] ≤ ε(n) ,

where Sign(sk, ·) is an oracle that takes as input a plaintext m and outputs Sign(sk,m), and Q is
the list of queries that A makes to this oracle.

Notice that we do not need to give our adversary A a verification oracle in these games because
the adversary A has access to the verification key. It can thus verify signatures itself, without any
need for an oracle! So, a verification oracle would be useless :).

3

3 Lamport’s one-time signature

One of the magical things about signatures is that, even though they seem like public-key objects
(since, well, there’s a public key and a secret key), they exist in Minicrypt, i.e., they can be
built from one-way functions. (We will also use a collision-resistant hash function, but this is not
actually necessary.) Our first hint of this possibility comes from Leslie Lamport’s construction
of a weaker object called a one-time signature [Lam79]. (This idea was actually first published
by Diffie and Hellman in their gigantic breakthrough paper in which they proposed public-key
cryptography [DH76]. However, Diffie and Hellman credit the idea to Lamport, and Lamport
eventually did write the idea down himself in [Lam79], though it took a few years.)

As you might guess, a one-time signature is a signature that is secure if you use it only once.
To formalize this, we only allow the adversary to make a single query to the signature oracle
before she attempts to forge a fresh signature. Here’s the definition. (We saw that the “one-
time” versions of MACs and secret-key encryption were achievable information theoretically, i.e.,
we could achieve security against computationally unbounded adversaries using the one-time pad
and pairwise-independent hash functions respectively. This is not possible for signatures (or, more
generally, for public-key primitives).)

Definition 3.1. A signature scheme is one-time secure if for every PPT A making at most one
query to the signature oracle in the (EUACMA) signature security game, there exists a negligible
ε(n) such that the probability that A wins is at most ε(n). For technical reasons, we also assume
that the Sign algorithm is deterministic.1

Given this, Lamport’s one-time signature is quite simple and elegant. Here’s the construction,
which can be used to sign n-bit messages. Let f be any one-way function.

• Gen(1n): Sample x1,0, . . . , xn,0, x1,1, . . . , xn,1 ∼ {0, 1}n. Output sk = (x1,0, . . . , xn,0, x1,1, . . . , xn,1)
and vk = (y1,0 = f(x1,0), . . . , yn,0 = f(xn,0), y1,1 = f(x1,1), . . . , yn,1 = f(xn,1)).

• Sign(sk,m): Output x1,m1 , x2,m2 , . . . , xn,mn , where m = (m1, . . . ,mn) ∈ {0, 1}n represents
the bit decomposition of m.

• Ver(vk,m, (x′1, . . . , x
′
n)): Output 1 if and only if f(xi) = yi,mi for all i.

In words, the signer knows preimages xi,b for the yi,b. To sign the plaintext m ∈ {0, 1}n, the
signer simply provides the preimages xi,mi corresponding to the bits of m. Intuitively, this is secure
because any plaintext m′ 6= m must differ from m in at least one bit, e.g., mi = 0 and m′i = 1. So,
in order for an adversary to produce a valid signature for m′, it must somehow produce a preimage
of yi,1. The below proof makes this formal. (It does require one little trick to make it actually
work, which is that the reduction must guess ahead of time an index i and a bit b such that m′i = b
and mi 6= b. This is necessary because the reduction “needs to know where to plant the challenge
y∗.”)

Theorem 3.2. Lamport’s signature is one-time secure.

1This is without loss of generality for one-time secure signatures. Since we only need to use it once, we can always
include as part of the secret key the random coins r that we will use to generate the one-and-only signature that we
will produce.

4

Proof. Suppose that there exists a PPT adversary A that wins the one-time signature game against
Lamport’s signature with non-negligible probability ε(n).

Then, we construct an adversary A′ in the one-way function game as follows. A′ takes as input
y∗ = f(x∗) for x∗ ∼ {0, 1}n and samples a uniformly random index i∗ ∼ {1, . . . , n} and a uniformly
random bit b∗ ∼ {0, 1}. It sets yi∗,b∗ := y∗ and for all other pairs (i, b) (including (i = i∗, b = 1−b∗)),
it samples xi,b ∼ {0, 1}n and sets yi,b := f(xi,b). It then sends vk = (y1,0, . . . , yn,0, y1,1, . . . , yn,1) to
A, receiving in response a single plaintext m to sign.

If mi∗ = b∗, A′ simply fails (since A′ does not know the inverse to yi∗,b∗ = y∗ and therefore
cannot provide a signature of m). Otherwise, A′ sends (x1,m1 , . . . , x1,mn) to A, receiving in response
m′, σ = (x′1, . . . , x

′
n). Finally, A′ outputs xi∗ .

Clearly A′ is efficient. First, notice that Pr[mi∗ = b∗] = 1/2, since b∗ was sampled uniformly at
random, and the distribution of vk is independent of b∗. (This independence relies on the fact that
y∗ = f(x∗) for uniformly random x∗ ∼ {0, 1}n.)

Now, let us assume without loss of generality that A always outputs m′ 6= m (since anyway A
always loses when m = m′). Then, we claim that

Pr[m′i∗ = b∗ and mi∗ 6= b∗] ≥ 1/(2n) .

To see this, notice that i∗ is independent of vk and b∗, so i∗ is uniformly random and independent
of m′, even conditioned on mi∗ 6= b∗. Since there exists at least one index i such that m′i 6= mi, the
claim follows.

Finally, we claim that

Pr[f(x′i∗) = y∗ | mi∗ 6= b∗, m′i∗ = b∗] ≥ ε(n) .

Indeed, conditioned on mi∗ 6= b∗ and m′i∗ = b∗, (1) the view of A is identical to its view in the
signature game; and (2) whenever A wins the signature game, we must have f(x′i∗) = y∗. The
result follows.

3.1 Don’t use this twice!

Of course, there is a reason that we stressed that this is really a one-time signature. If an adversary
knows a signature for two distinct plaintexts m = (m1, . . . ,mn) and m′ = (m′1, . . . ,m

′
n), then she

can trivially find a signature of any “mixed message,” e.g., (m1,m
′
2,m

′
3,m4, . . . ,mn−1,m

′
n).

4 Remember hash-then-MAC? Now it’s time for hash-then-sign!

In some sense, there are two distinct issues with Lamport’s signature scheme. The most serious
issue is of course that it can only be used once! But, a minor issue is that the key and signature
sizes are pretty silly. If we want to sign an n-bit plaintexts, then our secret key must be 2n2 bits
long, and a signature is n2 bits long

In this course, we often ignore such things—n2 is a polynomial in n, which is usually good enough
for us. But, it turns out that focusing on this will help us make progress on solving the bigger
problem. In particular, below, we will want to build a sequence of keys (sk0, vk0, . . . , skm, vkm)
and use ski−1 to sign vki. This clearly is not possible to do efficiently for large m using the above
scheme, because we will need the number of bits in ski−1 to be roughly the square of the number of

5

bits in vki, which will quickly get out of hand. So, we will need a way to be able to sign plaintexts
that are as long as the verification key.

Luckily, we’ve already thought about issues like this before in the context of MACs. Recall
that in the last lecture, we used the hash-then-MAC construction to combine a collision-resistant
hash function Hhk (where hk stands for hash key) with a MAC (Gen,MAC,Ver) for n-bit plaintexts
in order to build a MAC that works for arbitrarily large plaintexts. Essentially the exact same
construction works in this context. For completeness, we show the full scheme below.

Let (Gen,Sign,Ver) be a one-time secure signature for n-bit plaintexts m ∈ {0, 1}n, and let
Hhk : {0, 1}∗ → {0, 1}|hk| be a collision-resistant hash function. We build a new signature scheme
(Gen∗, Sign∗,Ver∗) that can sign arbitrarily long plaintexts M ∈ {0, 1}∗ as follows.

• Gen∗(1n): Sample hk ∼ {0, 1}n and (sk, vk) ← Gen(1n). Output sk∗ = (sk, hk) and vk∗ =
(vk, hk).

• Sign∗((sk, hk),M): Output Sign(sk,Hhk(M)).

• Ver∗((vk, hk),M, σ′): Output Ver(vk,Hhk(M), σ′).

The proof of this is essentially identical to the proof for MACs from the previous lecture, so we
do not include it. (In fact, this construction does not only convert a one-time secure signature on
n-bit plaintexts to a one-time signature on arbitrarily long plaintexts. It also converts a many-time
secure signature on n-bit plaintexts to a many-time secure signature on arbitrarily long plaintexts.
I.e., it inherits whatever security the original signature scheme has.)

Theorem 4.1. The above hash-and-sign scheme is a one-time secure signature for arbtirarily long
plaintexts M ∈ {0, 1}∗.

5 From one-time to many-time—a chain of keys, and a stateful
scheme (informal)

Now, it is relatively straightforward to convert a one-time signature into a many-time signature
if we are willing to change the definition slightly. Specifically, we will consider a scheme that is
stateful in the sense that it “updates the keys at every step.” This is analogous to the stream
cipher construction that we saw for secret-key encryption. (In fact, this whole lecture might give
you some serious déjà vu, as we’re repeating in this new context a lot of the ideas that we already
used on our long journey to building secret-key encryption.)

The scheme works as follows. Suppose we have a signature scheme that is one-time secure
and can sign arbitrarily long plaintexts (which we know how to construct, since we did it above).
We generate an initial key pair (sk1, vk1) using the Gen algorithm. Then, the first time that
we sign some message M1 ∈ {0, 1}∗, we do not just output Sign(sk1,M1). Instead, we sample
(sk2, vk2) ← Gen(1n) and output σ1 := Sign(sk1, (M1, vk2)). (Remember, we can sign arbitrarily
long messages, so there’s no issue with signing the longer message (M1, vk2).) You can interpret
this as a signature of a message saying “M1, and also the next time you wish to verify a signature
from me, please use my new verification key vk2.” (Indeed, we could sign this whole English
sentence if we wanted to.) Then, when it comes time to sign the next plaintext M2, we sample
(sk3, vk3)← Gen(1n) and output σ2 := Sign(sk2, (M2, vk3)). This second signature is verified with
the key vk2, and so on.

6

We will not bother to write a formal definition that captures this idea (since we will improve
upon it soon), but this scheme does in fact satisfy a nice version of this formal definition. Intuitively,
it works because (1) each signing key ski is only used to sign one thing (which is good since this
is only a one-time secure signature!); and (2) each verification key is authenticated by the previous
one, so “the adversary cannot replace a legitimate verification key vki with some illegitimate key
vk∗i .”

The very frustrating thing about this scheme is that it is stateful. It is slightly annoying that
the signing algorithm is stateful. But, it is a much bigger problem that the verification algorithm
must be stateful. In particular, the verification algorithm needs access to the first i− 1 signatures
σ1, . . . , σi−1 in order to verify the ith signature σi. This means that the scheme is only useful if
every party who ever wants to verify your signature on any plaintext Mi is willing to verify all of
your signatures on all plaintexts M1, . . . ,Mi−1 that you sent before that. That’s rather inefficient!
It also means that you need to be willing to share all of the previous plaintexts M1, . . . ,Mi−1 that
you have signed with whoever wants to verify Mi.

6 From one-time to many-time the right way—a tree of keys!

In the previous section, we used each key ski to sign one new verification key vki+1. Now, we use
each key to sign two new verification keys. This gives a tree of key instead of a list of keys.

Specifically, imagine that we sample a key pair (skx, vkx)← Gen(1n) for every bit string x with
length at most n. (Of course, there are 2n+1 − 1 such strings, so we cannot do this efficiently.
But we will fix this below.) E.g., we have (sk∅, vk∅) ← Gen(1n) (where ∅ represents the empty
string—the string with length zero), and then (sk0, vk0)← Gen(1n) and (sk1, vk1)← Gen(1n), and
then (sk00, vk00), and so on. We think of these as arranged in a binary tree in the natural way.
(I.e., (skx, vkx) has as its children (skx0, vkx0) and (skx1, vkx1).)

We only release vk∅ as our verification key. So, the verification key is nice and small, but right
now we will take our signing key to be (skx, vkx)|x|≤n, a list with 2n+1 − 1 elements! That is of
course way too long for the secret key, since we can’t write it down in polynomial time. But, we
will fix this later.

So, ignoring this gigantic problem for the moment, notice that we can then use sk∅ to compute
the signature σ∅ := Sign(sk∅, (vk0, vk1)) of the verification keys vk0 and vk1 corresponding to its
two children. And, more generally, we can use skx to compute σx := Sign(skx, (vkx0, vkx1)) for
all bit strings x with |x| < n. For convenience, we also define τx := (σx, vkx0, vkx1). Then, to
sign a plaintext m ∈ {0, 1}n, we release the signature σ∗m := Sign(skm,m) of m under the key skm
corresponding to m, together with the list τ∅, τm1 , τm1m2 , . . . , τm1m2···mn−1 . You can think of this
lists as corresponding to all signatures and verification keys τx along the path to m in our tree of
keys.

To verify this signature, the verification procedure first iterates through the list of the τx. For
each τm1m2···mi = (σm1m2···mi , vkm1m2···mi0, vkm1m2···mi1), it checks that

Ver(vkm1m2···mi , (vkm1m2···mi0, vkm1m2···mi1), σm1m2···mi) = 1 .

Finally, it checks that Ver(vkm,m, σ
∗
m) = 1. It outputs 1 if and only if all of these checks pass.

7

6.1 Sampling the keys lazily (and pseudorandomly)

One can check that the above scheme is secure. Intuitively, it is secure because every secret key
skx is only used to sign a single fixed plaintext—either (vkx0, vkx1) if x is not a leaf of the tree, or
x itself if x is a leaf. (And, since we assumed that the signing algorithm Sign is deterministic, each
time that we produce a signature under skx, it will be the same.) However, the key-generation
procedure is of course horribly inefficient, since it requires us to build a list with 2n+1−1 elements.

Of course, in order to sign any specific message m, we only need to know the keys along the path
∅,m1,m1m2, . . . ,m. So, a natural idea is to try to sample these keys lazily. I.e., the key-generation
algorithm might only sample sk∅, vk∅. And, when we are asked to sign message m, we could simply
sample fresh keys for all of the keys

(sk0, vk0), (sk1, vk1),

(skm10, vkm10), (skm11, vkm11),

(skm1m20, vkm1m20), (skm1m21, vkm1m21),

. . . ,

(skm1m2···mn−10, vkm1m2···mn−10), (skm1m2···mn−11, vkm1m2···mn−11)

necessary to create a signature for m. (These are all the keys along the path to m on the tree,
together with all of their siblings, since every time we sign a verification key vkx0, we also must sign
vkx1. If we didn’t do this, then we would not have a tree!)

The problem with using truly fresh keys here is that it is insecure. In particular, suppose that
our adversary asks us for two signatures. Then, with this approach, we would produce two different
key pairs (sk0, vk0) and (sk′0, vk

′
0) and then produce signatures under sk∅ of two different plaintexts

vk0 and vk′0 (well, technically, of (vk0, vk1) and (vk′0, vk
′
1))! This is not a good thing to do with a

signature that is only one-time secure!
So, we cannot actually sample fresh keys each time that we sign. And, we cannot store ≈ 2n

randomly sampled strings efficiently. We could just remember every key that we’ve sampled, but
only if we’re willing to have a stateful signing algorithm, which is not ideal. What we can do
instead is implicitly store ≈ 2n pseudorandom strings, using a PRF. Specifically, given a PRF Fk,
we can define (skx, vkx) ← Gen(1n;Fk(x)), where here we have used Fk(x) to replace the random
coins of the key-generation algorithm.2 Since Fk is a PRF, we intuitively expect using Fk(x) to be
just as good as using some uniformly random string rx.

Here is the full construction. Let Fk be a PRF, and let (Gen, Sign,Ver) be a signature scheme that
works for plaintexts of arbitrary length and is one-time secure. Then, we define (Gen∗, Sign∗,Ver∗)
to sign n-bit plaintext, as follows. (The formal description is a bit of a mouthful, but what’s going
on is just what was described above.)

• Gen∗(1n): Sample k ∼ {0, 1}n and (sk∅, vk∅) ← Gen(1n). Output sk∗ := (k, sk∅, vk∅) and
vk∗ := vk∅.

• Sign∗(sk∗ = (k, sk∅, vk∅),m): For i = 0, . . . , n− 1, compute

τi := (vkm1···mi0, vkm1···mi1, Sign(skm1···mi , (vkm1···mi0, vkm1···mi1)))

2We originally defined PRFs to take input strings of length n = |k| and to output strings of length n. Now, I am
assuming that our PRFs take as input strings of length at most n and output strings whose length is nC—whatever
the maximal number of random coins needed by the Gen algorithm is. Of course, it is easy to build such a PRF from
the kind that we defined earlier, so we will ignore this minor annoyance.

8

and τ∗ := Sign(skm,m), where (skx, vkx) := Gen(1n;Fk(x)) (and we interpret m1 · · ·mi as
the empty string when i = 0). Output σ∗ := (τ0, . . . , τn−1, τ

∗).

• Ver∗(vk∗ = vk∅,m, σ
′ := (τ ′0, . . . , τ

′
n−1, τ

∗)). Check that τ ′i = (vkm1···mi0, vkm1···mi1, σi) satis-
fies

Ver(vkm1···mi , (vkm1···mi0, vkm1···mi1), σi) = 1

for all i. Finally, check that Ver(vkm,m, τ
∗) = 1, and output 1 if and only if all checks pass.

Before we prove our main theorem, we will need a lemma about the following game. Intuitively,
the game allows the adversary to see one signature each from many different key pairs (ski, vki),
and asks the adversary to forge a signature for any of these key pairs. (The adversary is allowed to
request the signatures in any order. The annoying pseudocode on the right with the set Q is just
to make sure that the adversary does not request two signatures from the same key pair (ski, vki).)

Adversary Challenger
INPUT: 1n INPUT: 1n

(sk1, vk1)← Gen(1n), . . . , (skq, vkq)← Gen(1n)
vk1, . . . , vkq←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Q = ∅
DO UNTIL the adversary aborts

i ∈ {1, . . . , q},Mi ∈ {0, 1}∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
IF i ∈ Q, OUTPUT “LOSE”
Add i to Q.

Sign(ski,Mi)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
END DO

i,M ′, σ′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
IF M ′ 6= Mi AND Ver(vki,M

′, σ′) = 1,
OUTPUT “WIN”

Lemma 6.1. If (Gen,Sign,Ver) is a secure one-time signature, then no adversary has non-negligible
probability of winning the above game for any q = q(n) ≤ poly(n).

Proof. We suppose that there exists an adversary A with non-negligible advantage ε(n) in the above
game and construct an adversary A′ in the one-time signature game against (Gen, Sign,Ver). A′
receives as input a verification key vk∗, where (sk∗, vk∗)← Gen(1n). It then samples i∗ ∼ {1, . . . , q}
uniformly at random and sets vki∗ := vk∗. For all i 6= i∗, A′ samples (ski, vki)← Gen(1n). It then
sends (vk1, . . . , vkq) to A.
A′ then responds to the queries (i,Mi) made by A as follows. If i 6= i∗, it computes the signature

Sign(ski,Mi) itself and sends the result to A. If i = i∗, it passes Mi to its signing oracle, receiving
in response some signature σ∗. It then simply passes σ∗ to A.

When A eventually sends (i,M ′, σ′) to A′, A′ first checks if i = i∗. If not, then A′ simply fails.
Otherwise, A′ passes (M ′, σ′) to its challenger.

Clearly A′ is efficient. We claim that A′ wins the one-time signature game with probability
equal to ε(n)/q, which is non-negligible because q ≤ poly(n). To see this, first notice that the

9

view of A in interaction with A′ is identical to the view of A in the game described above, and
is independent of i∗. It follows that A′ outputs a valid forgery (i,M ′, σ′) forgery with probability
ε(n), and that this event is independent of i∗. Therefore,

Pr[A outputs a valid forgery and i = i∗] = ε(n)/q ,

as needed.

Theorem 6.2. The above scheme is a secure (EUACMA) signature. In particular, secure signa-
tures are implied by the existence of one-way functions (and CRHFs, though this is not necessary).

Proof. As you might guess, the proof is via a sequence of (just two) games. (A good rule of thumb
is that a sequence of games is the right proof strategy whenever you are proving the security of a
construction that uses more than one different primitive. E.g., here we are using both a PRF and
the underlying one-time signature.)

Game 1 is simply the signature security game (the EUACMA game) against Sig∗.
Game 2 is the same game, except we replace the keys (vkx, skx) = Gen(1n;Fk(x)) by (vkx, skx) =

Gen(1n; rx) for uniformly random and independent rx. (I.e., Game 2 is the signature security game
against the inefficient signature scheme that we described in the previous section.)

The intuition for the rest of the proof is simply that (1) Game 1 and Game 2 are indistinguishable
by the security of the PRF; and (2) no PPT adversary can have non-negligible advantage in Game
2 by the security of the one-time signature (because each key pair is only used to sign a single
plaintext). The following two claims make this formal.

Claim 6.3. Any for any PPT adversary A, there exists negligible ε(n) such that

Pr[A wins Game 1]− Pr[A wins Game 2] ≤ ε(n) .

Proof. Given an adversary A in Game 1 (or Game 2), we construct an adversary A′ in the PRF
security game as follows. I.e., A′ is given oracle access to an oracle Hb, where b ∼ {0, 1}, H0 is a
random oracle, and H1 is Fk for k ∼ {0, 1}n, and A′ wants to guess the bit b.
A′ samples (vk∅, sk∅) ← Gen(1n) and sends vk∗ := vk∅ to A. Then, when A makes a query m

to its signature oracle, A′ runs the signing algorithm defined above, except that it sets the keys to
be (skx, vkx) := Gen(1n;Hb(x)).

Finally, A′ sends to A a purported forged signature m′, σ′. A′ then simply runs Ver∗(vk∅,m
′, σ′)

algorithm itself. If the verification algorithm outputs 1 AND m′ was not one of the queries made
by A, then A′ outputs 1. Otherwise, it outputs 0.
A′ is clearly efficient. Furthermore, notice that when b = 0, the view of A is exactly the same

as its view in Game 2. When b = 1, its view is exactly the same as its view in Game 1. It follows
that the advantage of A′ in guessing b is exactly (half of) the difference that we are trying to prove
is negligible. Since Fk is a secure PRF, this difference must be negligible, as needed.

Claim 6.4. No PPT adversary can have non-negligible advantage in Game 2.

Proof. We prove this using Lemma 6.1. So, we suppose that some adversary A that has non-
negligible advantage in Game 2, and we build an adversary A′ in the game from Lemma 6.1.
A′ first receives verification keys vk1, . . . , vkq from its challenger, where q ≤ poly(n) is a bound

on the number of queries made by A. Then, A′ simulates Game 2 with A. Each time that the

10

game requires A′ to produce a verification key vkx that it has not already produced, it uses the
next unused key in list vk1, . . . , vkq. Each time that it needs to produce a signature, it makes the
corresponding signature query. (Notice that here we are relying on the fact that we only need to
use each key pair (skx, vkx) once.) Finally, A′ outputs m′ ∈ {0, 1}n and a purported signature σ′.
If m′ matches one of the queries made by A, then A′ simply gives up. Otherwise, σ′ must contain a
purported signature σ∗ of some string M∗ ∈ {0, 1}∗ with corresponding verification key vkx∗ where
vkx∗ is one of the keys produced by A′ earlier, and M∗ was not signed with vkx∗ . A′ then uses the
index corresponding to vkx∗ , the message M∗, and the signature σ∗ as its forgery.

Clearly, A′ is efficient, and the success probability of A′ is at least the success probability of A.
The result follows.

References

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 1976. 1, 4

[Lam79] Leslie Lamport. Constructing digital signatures from a one way function. Technical Report
CSL-98, October 1979. 4

11

	Public keys!
	A little history
	Splitting the key in two

	Signatures
	Security

	Lamport's one-time signature
	Don't use this twice!

	Remember hash-then-MAC? Now it's time for hash-then-sign!
	From one-time to many-time—a chain of keys, and a stateful scheme (informal)
	From one-time to many-time the right way—a tree of keys!
	Sampling the keys lazily (and pseudorandomly)

