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1 From secrecy to authenticity

In our first lecture, we met Alice and Bob. Alice wanted to communicate with Bob without revealing
any information to an eavesdropper Eve. We then spent almost a month figuring out how to do
this—using one-way functions to build pseudorandom generators to build pseudorandom functions
to build secret-key encryption.

But, now Alice and Bob have another problem (ugh!). Bob has received a message, but he’s not
sure that it came from Alice. Perhaps Eve sent the message? Even if the message was encrypted
using a semantically secure encryption scheme with the secret key that only Alice and Bob hold,
this does not guarantee that the message was actually sent by Alice.

In other words, until now, we have only been concerned with the secrecy of their communication—
the guarantee that “nobody else can read Alice and Bob’s messages”—but we have not been con-
cerned at all with the authenticity of their communication—the guarantee that “nobody can forge
a message in a way that makes it look like it was sent by Alice.”

Both properties are extremely important. E.g., if Alice sends the message “ATTACK AT
DAWN” to Bob, she certainly wants the message to stay secret. (If Eve knew the contents of
this message, that would be a huge problem!) But, perhaps just as importantly, if Bob receives a
message saying “ATTACK AT DUSK”, he needs to know whether this message came from Alice.
(It would be a big problem if Eve could tell Bob when to attack!)

Even in situations where we don’t care about secrecy, we still often care about authenticity. For
example, remember that Alice and Bob got divorced in lecture 5? They then decided to flip a coin
to decide who got to keep their cat Whiskers. But, what if Bob loses the coinflip and then refuses
to accept defeat? How could Alice prove in divorce court that Bob really did agree to flip a coin
for Whiskers?

1.1 Squiggles don’t work

In the physical world, we often solve this using a squiggly signature written on a piece of paper.
I.e., in order to “prove” to Bob that she was the one to send the plaintext message “ATTACK AT
DAWN”, Alice writes her name in some complicated squiggly way (something like “A L I C E ”)
below the plaintext. I.e., she “signs” it. (I’m using this silly “squiggle” terminology both to point
out how silly this is, and because we will want to use the word “signature” for something else.)
Similarly, before Alice and Bob flip a coin for Whiskers, they both write on a piece of paper “We
both agree to flip a coin for Whiskers. Bob wins if the coin comes up heads and Alice wins if
the coin comes up tails.” Then they each draw on the piece of paper their respective squiggles,
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“A L I C E ” and “BOB”. (They should also probably draw some squiggles their messages in the
coin-flipping protocol.) Then, later, if the coin comes up tails, Alice can take this piece of paper
with Bob’s squiggle on it to divorce court and tell the judge “See?! Bob squiggled on this piece of
paper!” and the judge will let her have Whiskers.

I guess the hope is that if Alice and Bob’s squiggles are sufficiently squiggly, then it should be
hard for anyone else to produce a squiggle that looks the same.

Frankly, this idea is just absolutely horrible (though somehow we do use it for a lot of things, and
it leads to fewer problems than you might expect). E.g., think about the “ATTACK AT DAWN”
story from Eve’s perspective. Eve intercepts Alice’s letter to Bob (because she’s an eavesdropper;
that’s just what she does). The end of Alice’s letter has these funny squiggles “A L I C E ” on
them, which Eve immediately recognizes as Alice’s squiggle. Now, Eve can send whatever messages
she wants to Bob, and as long as she ends the message with these funny squiggles “A L I C E ”,
Bob will think that the message came from Alice! So, while Alice’s original message was “ATTACK
AT DAWN”, Eve can replace it with the message “ATTACK AT DUSK” or “SURRENDER TO
EVE” or “GIVE EVE WHISKERS” or whatever. (With the wonders of modern technology, she
can just copy and paste the squiggle from one message to another.)

The same issue arises in the divorce story with Whiskers. If the coin comes up tails, Bob can
replace the original agreement (which was “We both agree to flip a coin for Whiskers. Bob wins if
the coin comes up heads and Alice wins if the coin comes up tails.”) with a new message “. . . Bob
wins if the coin comes up tails.” He can then put Alice’s squiggle “A L I C E ” on this new message
and bring it to a judge to argue that he won the coin flip, so he should get Whiskers.

The only sense in which this system of squiggly signatures is secure is if it is somehow extremely
difficult to reproduce the squiggles “A L I C E ” or even to just transfer them from one piece of
paper to another, or even to just erase the original plaintext that Alice signed and replace it with
a new one. This is, of course, absurd.

A much much better solution would be for Alice and Bob to somehow produce a signature that
somehow incorporates the plaintext that they’re signing. In other words, for different plaintexts m,
Alice should produce different signatures that (1) confirm to Bob that she herself signed specifically
the plaintext m; and (2) do not allow an adversary to forge a signature for some other plaintext
m′.

2 MACs

We make the above formal in the secret-key setting by defining the notion of a message authenti-
cation code, or a MAC. (Later, we will see the public-key variant of this, which is called a digital
signature—or just a signature. MACs are useful for dealing with some of the problems described
above, but not all of them. Signatures more-or-less solve all of the problems described above (at
the cost of being significantly less efficient than MACs in practice).)

As we did with encryption schemes, we will first define correctness of MACs and then worry
about security. Intuitively, a MAC consists of a key-generation algorithm, a MAC algorithm, and a
verification algorithm. The key generation algorithm generates a key (duh). The MAC algorithm
takes as input the key and a plaintext m and outputs a tag τ . The verification algorithm takes as
input the key, a plaintext, and a tag τ , and confirms that the tag is valid. (We use the word tag
here because, again, w are saving the word signature for something else. Sometimes, people simply
refer to the tag itself as a “MAC.”)
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Definition 2.1. A MAC is a triple of PPT algorithms (Gen,MAC,Ver) with the following behavior.

1. Gen takes as input 1n and outputs a key k ∈ {0, 1}n. (Here, we are assuming that the key k
is an n-bit string for simplicity.)

2. MAC takes as input a key k ∈ {0, 1}n and a plaintext m ∈ {0, 1}n and outputs a tag τ ∈ {0, 1}∗.

3. Ver takes as input a key k ∈ {0, 1}n, plaintext m ∈ {0, 1}n, and tag τ ∈ {0, 1}∗ and outputs
either 0 or 1 (i.e., either “invalid” or “valid”).

4. (Correctness.) For any n and any plaintext m ∈ {0, 1}n,

Pr
k←Gen(1n)

[Ver(k,m,MAC(k,m)) = 1] = 1 .

(In other words, “the Ver algorithm always accepts a tag τ produced by the MAC algorithm
on the correct plaintext m with the correct key k.”) Here, all three algorithms can potentially
be randomized (certainly, Gen should be randomized), and the probability is therefore over the
random coins of all three algorithms. We often think of Ver as being deterministic, though
this is not strictly necessary.

Notice that both the MAC algorithm and the Ver algorithm take as input a plaintext m. I.e.,
a tag τ is associated with a particular plaintext m. So, if Alice provides a tag τ for the plaintext
message “ATTACK AT DAWN”, τ is not necessarily a valid tag for the plaintext “ATTACK
AT DUSK”. (In fact, to achieve security, τ probably shouldn’t be a valid tag for both messages
simultaneously.)

2.1 Security

Of course, a MAC is quite boring without some notion of security. (If we only wanted to satisfy
correctness, then the scheme in which Ver always outputs 1 would suffice!) Our security definition
for a MAC should formalize the intuitive idea that the adversary should not be able to forge a tag
for a new message.

To make this formal, we imagine an adversary that can see many different tags τi of many
different plaintexts mi. (I.e., we imagine that Eve has seen many messages from Alice that include
a tag.) In fact, to be extra careful, we let the adversary choose the plaintexts herself. This is similar
to how in the semantic security game, we let the adversary choose the plaintexts to be encrypted.
Here, we will even allow the adversary to do this adaptively—i.e., she may choose which plaintext
mi+1 he wants to sign next after she has seen the tags for m1, . . . ,mi. The adversary will also
have access to the Ver algorithm. We then ask the adversary to produce a tag τ ′ ∈ {0, 1}∗ for any
plaintext m′ ∈ {0, 1}n, and the adversary wins if (1) m′ is a new message (i.e., m′ 6= mi for all i);
and (2) Ver(k,m′, τ ′) = 1. In other words, the adversary wins if she can convince Bob (the verifier
running the Ver algorithm) that Alice tagged a message m′ that Alice hasn’t actually tagged.

Notice that it’s not interesting to produce a valid tag for a message that Alice already tagged
herself. First of all, this would be trivial to do—just use the tag you already know Second, we
don’t want such protection—if Alice really did send the message “ATTACK AT DAWN” to Bob,
then we don’t mind if Eve is able to convince Bob that Alice sent the message “ATTACK AT
DAWN” to Bob.

We capture all of this formally in the following game between an adversary and a challenger.
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Adversary Challenger
INPUT: 1n INPUT: 1n

k ← Gen(1n)
i = 1
DO UNTIL the adversary aborts

mi ∈ {0, 1}n, (m′
i, τi)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

MAC(k,mi),Ver(k,m
′
i, τi)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i++
END DO

m′, τ ′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
IF m′ /∈ {m1, . . . ,m`} AND Ver(k,m′, τ ′) = 1,

OUTPUT “WIN”

Definition 2.2. A MAC is secure if for any PPT adversary A there exists a negligible ε(n) such
that the probability that A wins the above game is at most ε(n).

The following definition is equivalent and replaces the interactive game described above with a
much more succinct oracle-based definition.

Definition 2.3. A MAC is secure if for any PPT adversary A there exists a negligible ε(n) such
that

Pr
k←Gen(1n)

[(m′, τ ′)← AMac(k,·),Ver(k,·,·)(1n), m′ /∈ Q and Ver(k,m′, τ ′) = 1] ≤ ε(n) ,

where Mac(k, ·) is an oracle that takes as input a plaintext m ∈ {0, 1}n and outputs Mac(k,m),
Ver(k, ·, ·) is an oracle that takes as input a plaintext m ∈ {0, 1}n and a tag τ and outputs
Ver(k,m, τ), and Q is the list of queries that A makes to the oracle Mac(k, ·).

There are actually many variants of this definition. Formally, the above definition is known as
existential unforgeability against adaptive chosen message attacks (EUACMA for “short”). Here,
“existential unforgeability” means that the adversary wins if there exists a plaintext m′ that it can
produce a valid tag τ ′ for. A weaker definition is universal unforgeability, in which we only ask that
the adversary cannot produce a valid tag for some specific plaintext (e.g., a random plaintext or one
that the adversary chooses before making its queries). “Adaptive chosen message attack” means
that the adversary can choose the messages mi that are tagged, and that she may do so adaptively,
i.e. choosing mi+1 after seeing the tags for m1, . . . ,mi. A non-adaptive chosen message attack
would require the adversary to send m1, . . . ,m` all at once. And, e.g., a random message attack
only shows the adversary tags on random messages, rather than adversarially chosen messages.

So, the above definition is quite strong! Nevertheless, we can achieve it relatively easily. (There
are even stronger definitions than this! For example, we could say that the adversary can win even
if m′ ∈ {m1, . . . ,m`}, as long as τ ′ is not one of the tags produced by the challenger—i.e., the
adversary wins by producing a valid tag for a new message or producing a new valid tag for an old
message. We actually achieve this definition too, since our MAC will actually have a unique valid
tag for every plaintext, but we do not worry about this here.)
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2.2 A simple construction

It turns out that, given the machinery that we have already developed for building SKE, construct-
ing MACs is quite simple. Our MAC will even be deterministic (except, of course, for the key-
generation algorithm). In fact, “a PRF is already a MAC.” In particular, let Fk : {0, 1}|k| → {0, 1}|k|
be a PRF. Then, here is the construction.

• Gen(1n): output k ∼ {0, 1}n.

• MAC(k,m): output τ := Fk(m).

• Ver(k,m′, τ ′): output 1 if and only if τ ′ = Fk(m′).

Intuitively, it should be clear why this MAC should be unforgeable. For a fixed key k ∈ {0, 1}n,
each plaintext m ∈ {0, 1}n has a unique tag Fk(m) = τ ∈ {0, 1}n such that Ver(k,m, τ) = 1. So, in
order for the adversary to forge a valid tag τ ′ for any message m′ on which he has not queried his
MAC oracle, he must guess the value Fk(m′). But, since Fk is a PRF, Fk(m′) is indistinguishable
from random from the adversary’s perspective.

Below, we prove this formally. Notice in particular that this implies that secure MACs exist if
OWFs exist.

Theorem 2.4. The above MAC is secure (i.e., EUACMA).

Proof. It is trivial to see that the MAC is efficient and correct. We prove security, of course, via a
reduction. For simplicity, we ignore verification queries in this proof. They do complicate things a
bit.

In particular, recall the PRF security game, in which an adversary A′ is given oracle access to
some function Hb : {0, 1}n → {0, 1}n, where H0 is a random oracle and H1 := Fk for k ∼ {0, 1}n.
And, A′ must guess the bit b.

So, we suppose that the statement is false, i.e., that there exists some adversary A that wins
the above game with non-negligible probability ε(n). Then, we construct an adversary A′ in the
PRF game as follows. A′ receives repeated plaintext queries m ∈ {0, 1}n from A, and each time
simply passes the query m to its own oracle Hb, and passes the response H(m) back to A. (I.e.,
A′ “tells A that the tag of the message m is equal to Hb(m).”)

Eventually, A finishes with its queries and sends (m′, τ ′) to A′. We assume for simplicity that
m′ was not queried before (since we can always replace A by another adversary with at least
advantage ε(n) that never sends an m′ that was previously queried). A′ then queries its oracle Hb

one additional time on the plaintext m′, receiving as output τ∗ := Hb(m
′). If τ∗ = τ ′, then A′

outputs b′ := 1 (i.e., A′ guesses that Hb = Fk). Otherwise, A′ outputs b′ := 0.
Clearly, A′ is efficient. We have

Pr[b′ = b] = Pr[b′ = b | b = 0]/2 + Pr[b′ = b | b = 1]/2

= Pr
H∼{f :{0,1}n→{0,1}n

[τ ′ 6= H(m′)]/2 + Pr
k∼{0,1}n

[τ ′ = MAC(k,m′)]/2 .

The second probability is exactly ε(n). We claim that the first probability is exactly 1 − 2−n,
so that the total probability is 1/2 + ε(n)/2 − 2−n−1, which is non-negligibly larger than 1/2, a
contradiction. Indeed, to see this, it suffices to notice that, since m′ was never queried by A,
H(m′) ∈ {0, 1}n is uniformly random and independent of the view of A. Therefore, we must have
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Pr[τ ′ = H(m)] = 2−n, regardless of how A behaves. (If we allowed for verification queries, we
would have to worry about what happens when m′ was a part of a verification query. We would
need to argue that with high probability all verification queries made involving m′ returned 0, and
then argue that conditioned on that H(m′) is a uniformly random element from the set of n-bit
strings τ that were not part of a verification query with m′.)

The result follows.

3 MACing longer messages

Our MAC scheme, as defined above, only handles plaintexts m ∈ {0, 1}n of length n when the
key k ∈ {0, 1}n has length n. But, what if we want to use our key k ∈ {0, 1}n to MAC a longer
plaintext, say M := (m1,m2, . . . ,m`) ∈ {0, 1}`n—or even an arbitrarily long plaintext M ∈ {0, 1}∗?

The analogous problem for encryption schemes was trivial to solve. If you want to encrypt a long
message, you can just encrypt the parts individually. However, for MACs, this doesn’t work. I.e.,
suppose that MAC is a secure MAC for n-bit strings, and consider MAC′(k,M = (m1, . . . ,m`)) :=
(MAC(k,m1), . . . ,MAC(k,m`)). This is not a secure MAC! For example, given a tag of M :=
(m1, . . . ,m`) under this MAC, it is trivial to find a valid tag of, e.g., M ′ := (m`,m`−1, . . . ,m1), or
more generally, any reordering of any subset of the plaintexts! This could be a huge problem! E.g.,
imagine that each of the plaintexts is a single word. Then, an adversary Eve could use a valid tag
of the message “EVE GOT A C ON HER EXAM” to “EVE GOT A ON EXAM”.

So, one needs to be a little more clever. One could try fixing the ordering of the mi by trying
MAC′(k,M = (m1, . . . ,m`)) = (MAC(k, (1,m1)), . . . ,MAC(k, (`,m`)) (where here we asssume that
the plaintexts mi have length n − log ` so that we have extra room to include the indices). But,
this still doesn’t work. For example, if Eve knows a valid tag for “ALICE GOT AN A ON HER
EXAM” and a valid tag for “EVE GOT A C ON HER EXAM”, it is trivial for her to construct a
valid tag for “EVE GOT AN A ON HER EXAM” and also a tag for “ALICE GOT A C ON HER
EXAM”.

One solution that works is to use the following scheme:

MAC′(k, (m1, . . . ,m`)) := (r,MAC(k, (r, 1, `,m1)),MAC(k, (r, 2, `,m2)), . . . ,MAC(k, (r, `, `,m`))) ,

where, e.g., r ∼ {0, 1}n/2 is sampled uniformly at random. (This is our first example of a MAC
where the MAC function is randomized. Again, we have cheated a bit by changing the length of
the individual mi—now they have length roughly n/2− 2 log `.)

Intuitively, the uniformly random r prevents the sort of “mix and match” attack above, which
allowed Eve to use a MAC of (m1,0,m2,0, . . . ,m`,0) and a MAC of (m1,1,m2,1, . . . ,m`,1) to create
a new MAC of the plaintext (m1,b1 ,m2,b2 , . . . ,m`,b`) for bits bi of her choice. This attack will not
work on the above scheme because the MACs of the two different plaintexts will have two different
random nonces r0, r1 ∼ {0, 1}n/2 except with probability 2−n/2. (Recall a “nonce” is what we call
a string that is meant to be used only once.)

The indices 1, 2, . . . , ` prevent an attacker from applying the rearranging attack we discussed
before. And, the inclusion of the length ` of the total message prevents an attacker from shortening
a plaintext: e.g., “EVE IS OUR ALLY’S ENEMY” should not be shortened to “EVE IS OUR
ALLY”.

It is a nice exercise to prove that this MAC actually is secure.
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3.1 Hash-then-MAC, and collision-resistant hash functions

In practice, the above technique is far too slow for MACing very long messages. E.g., it is quite
common for people to MAC (or, really, to sign, using the digital signatures that we will discuss
later) software that might be billions of bits long. Practical PRFs are quite efficient, but we would
still prefer not to apply a PRF billions of times, and more importantly, we don’t want to end up
with a MAC that is a billion bits long if we can avoid it.

Instead, people use a technique called hash-then-MAC. (It’s not a very clever name.) In particu-
lar, suppose we have an efficiently computable family of hash functions Hk : {0, 1}∗ → {0, 1}|k| (for
now, all I require of Hk is that it be efficiently computable and maps arbitrarily long strings to |k|-
bit strings) and a MAC scheme (Gen,MAC,Ver) that allows us to tag only n-bit plaintexts. Then,
we can consider the following MAC scheme that works with plaintexts M ∈ {0, 1}∗ of arbitrary
length.

• Gen′(1n): Output k1 ∼ {0, 1}n, k2 ← Gen(1n).

• MAC′(k1, k2,M): Compute m := Hk1(M) and output τ := MAC(k2,m).

• Ver′(k1, k2,M, τ): Compute m := Hk1(M) and output Ver(k2,m, τ).

In other words, instead of MACing M , we MAC a hash of M . In practice, it is typically much
much faster to hash-then-MAC, rather than using the construction from the previous section. And,
clearly, hash-then-MAC allows us to produce much shorter tags—tags whose length is independent
of the length of the plaintext M .

Of course, not all hash functions Hk are sufficient for this task. E.g., if the hash function Hk

always outputs zero, or if it just outputs the first n bits of its input, then clearly the above will not
be a secure MAC.

Much more generally, suppose that an adversary can efficiently find a collision M,M ′ ∈ {0, 1}∗
such that M 6= M ′ but hk(M) = hk(M ′). Then, such an adversary could be used to violate the
security of our MAC by requesting a tag τ of M , and then using that same tag τ as a tag for M ′.
This motivates the definition of a collision-resistant hash function.

Definition 3.1. A family of functions Hk : {0, 1}∗ → {0, 1}|k| is a collision-resistant hash function
if the following hold.

• (Efficiently computable.) There exists a PPT algorithm B such that B(k,m) = Hk(M)
for all k and M .

• (Collision resistant.) For every PPT adversary A, there exists a negligible ε(n) such that

Pr
k∼{0,1}n

[(M,M ′)← A(k), Hk(M) = Hk(M ′) and M 6= M ′] ≤ ε(n) .

Remark. In the above definition of collision resistance, we give the adversary access to the key k.
But, in the MAC game, the adversary is certainly not given the key k. One can therefore imagine a
different definition in which the adversary is just given oracle access to Hk. This weaker definitions
would be sufficient for building MACs (and is much easier to construct), but we instead give this
stronger definition because it is useful in many other context (such as in the next lecture).
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Remark. Collision-resistant hash functions are very important objects. Unfortunately, there is no
known construction of a collision-resistant hash function from one-way functions. In fact, we have
oracle separations proving that there can be no simple black-box construction of a CRHF from a
OWF. So, in some sense, CRHFs exist outside of Minicrypt.

In practice, though, we often think of Minicrypt as containing CRHFs, since a random oracle
is a CRHF, and since in practice we think of “cryptographic hash functions” like SHA-3 as being
collision resistant. (Russell Impagliazzo didn’t specify whether Minicrypt contains CRHFs when he
defined Minicrypt.) There are also relatively simple examples of collision-resistant hash functions
that can be built assuming the hardness of the discrete logarithm or factoring (appropriately defined).

Theorem 3.2. If Hk is a collision-resistant hash function and (Gen,MAC,Ver) is a secure MAC,
then (Gen′,MAC′,Ver′) is a secure MAC (with message space {0, 1}∗).

We prove security via a simple sequence of (just two) games. In fact, this is our first example
of a construction that uses two different primitives together—both a MAC and a collision-resistant
hash function. In such cases, it is almost always a good idea to apply a sequence of games, which
allows us to neatly apply the security of the different primitives one by one.

Proof. Let Game 1 be the EUACMA-security game against Mac′.
To define Game 2, we write M1, . . . ,Mq for the queries made by the adversary, and we write M ′

for the plaintext that the adversary attempts to produce a valid MAC for. Then, let Game 2 be
the same as Game 1, except we replace the condition that M ′ 6= Mi by the condition Hk1(M ′) 6=
Hk2(Mi). In other words, instead of requiring that the adversary tag a new plaintext, we require
the adversary to tag a plaintext with a new hash. (Notice that this makes things a bit harder for
the adversary.)

The result then follows from the following two claims. Intuitively, the first claim is proven via
a reduction from collision resistance, in which the reduction computes MAC itself, and the second
game is proven via a reduction from MAC security, in which the reduction computes H itself.

Claim 3.3. Any PPT adversary A,

Pr[A wins Game 1]− Pr[A wins Game 2]

is negligible, assuming that Hk is collision resistant.

Proof. Suppose not. Then, A must produce a query plaintext Mi and another plaintext M ′ with
Mi 6= M ′ such that Hk1(Mi) = Hk1(M ′) with non-negligible probability.

So, consider the adversary A′ in the collision resistance game for Hk1 that behaves as follows.
A′ takes as input a key k1 ∼ {0, 1}n and samples a MAC key k2 ∼ Gen(1n). It then takes the
queries M1, . . . ,Mq from A, each time responding with MAC(k2, Hk1(Mi)). Eventually, A sends
the plaintext M ′ and tag τ ′ to A′. Then, A′ checks if Hk1(M ′) = Hk2(Mi) (and M ′ 6= Mi) for any
i, and if so, it simply outputs (Mi,M

′). (Otherwise, it simply fails.)
Notice that the view of A is distributed identically to its view in an honest run Game 1. So,

it must be the case that A′ successfully finds a collision with non-negligible probability. But, this
contradicts the collision resistance of H. So, such an A cannot exist.

Claim 3.4. No adversary has non-negligible advantage in Game 2.
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Proof. Suppose not. I.e., there exists an adversary A that has non-negligible probability of winning
the EUACMA game against MAC′ with the extra guarantee that Hk1(M ′) 6= Hk1(Mi) for all i.

Then, we construct an adversary A′ in the EUACMA game against the original MAC MAC as
follows. It first samples a uniformly random key k1 ∼ {0, 1}n. For each query Mi made by the
adversary A, A′ simply queries its oracle on mi := Hk1(Mi), receiving as output a tag τi, which it
passes to A. Finally, A sends the message M ′ and tag τ ′, and A′ outputs m′ := Hk1(M ′) together
with τ ′.

Clearly, A′ is efficient. Furthermore, notice that if Hk1(M ′) 6= Hk1(Mi) for all i, then m′ 6= mi

for all i (by definition). Furthermore, τ ′ is a valid tag of M ′ under MAC′ if and only if τ ′ is a
valid tag of m′ under MAC. Therefore, A′ wins its game if and only if A wins Game 2. Since A
wins with non-negligible probability by assumption, then A′ wins with non-negligible probability,
contradicting the fact that MAC is secure.

The result follows.

The full theorem then follows immediately by combining the two claims.

4 A note on information-theoretic one-time (and t-time) MACs

It turns out that, if you just want to MAC a single plaintexts (or, actually, any a priori fixed
polynomial number of plaintexts), then this can be done information theoretically (i.e., in a way
that works even against unbounded adversaries). This is MAC analogue of how the one-time pad
encryption scheme achieves perfect Shannon security. Here is the formal definition. For simplicity,
in this case we assume that the MAC algorithm is deterministic and we replace the Ver algorithm
with a simple check that τ = MAC(k,m)—and we explicitly model the tag space T and the message
space M with the assumption that |T | ≥ |M|.

Definition 4.1. A perfect one-time MAC is a pair of PPT algorithms (Gen,MAC) with plaintext
space M and tag space T such that for any two plaintexts m0,m1 ∈M with m0 6= m1 and any two
tags τ0, τ1 ∈ T ,

Pr
k←Gen()

[MAC(k,m0) = τ0 and MAC(k,m1) = τ1] = 1/|T |2 .

Intuitively, the above definition means that, no matter what tag τ0 the adversary sees for the
message m0, the unique valid tag for m1 is uniformly random. So, no matter what the adversary
does, if she only sees a single tag (i.e., if the MAC is only used one time), she cannot guess the correct
tag of any other plaintext with probability better than random. Another way to phrase this is to say
that the tags MAC(k,m0) and MAC(k,m1) are uniformly random and independent, or alternatively,
that the full list of tags for all possible plaintexts MAC(k,m1),MAC(k,m2), . . . ,MAC(k,mN ) are
pairwise independent uniform random variables.

First, let’s see a MAC scheme that does not achieve this definition: the one-time pad. I.e.,
suppose that Gen outputs a uniformly random key k ∼ {0, 1}n, and for any plaintext m ∈ {0, 1}n,
we can define the tag of m as τ := MAC(k,m) := k ⊕m. This is not a good MAC! In particular,
given the tag of m0, the tag of m1 is fixed, MAC(k,m0) = MAC(k,m1)⊕m0 ⊕m1!

For an actually secure solution, we let the plaintext space be M = Zp for some prime p, and
we take the tag space to also equal T := Zp. The key-generation algorithm outputs two uniformly
random elements a, b ∼ Zp. Then, a tag of m ∈ Zp is

am+ b mod p .
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One can then easily check that for any two tags τ0, τ1 ∈ Zp and any two distinct plaintexts m0,m1 ∈
Zp, there is a unique pair of elements a, b ∈ Zp such that am0+b = τ0 mod p and am1+b = τ1 mod p.
Specifically, a := (τ1 − τ0)(m1 − m0)

−1 mod p (where the inverse is taken modulo p) and take
b := τ0 − am0. This immediately implies that this is a secure one-time MAC.

Much more generally, any pairwise-independent hash family hk yields a one-time MAC. A pair-
wise independent hash family hk (often also called a universal hash function) is a family of functions
such that, well,

Pr
k

[hk(m0) = τ0, hk(m1) = τ1] = 1/|T |2

for distinct inputs m0,m1 and any τ0, τ1 in the range T of the function family hk. These are very
well-studied, and they’re clearly equivalent to perfect one-time MACs.

More generally still, one can construct a t-time MAC using what’s known as a (t + 1)-wise
independent hash family, which satisfy

Pr
k

[hk(m1) = τ1, hk(m2) = τ2, . . . , hk(mt+1)] = 1/|T |t+1 .

Such objects can be constructed efficiently for any polynomially bounded choice of t. (Specifically,
one needs key size equal to (t+1) · log2 |M|).) This is somehow analogous to how one can generalize
the one-time pad with a “t-time pad” by taking the key to have length t · log2 |M|. (It’s not exactly
the same, though. The t-time pad must either be stateful or randomized in order to avoid encrypting
the same plaintext twice with the same ciphertext. For MACs, this is not an issue.)

Remark. MACs as defined in the previous sections (not the information-theoretic MACs from this
section) imply the existence of one-way functions. The existence of information-theoretic one-time
MACs (and, more generally, t-time MACs) in some sense explains why this fact isn’t so easy to
prove. A proof will need to somehow use the fact that your MAC isn’t just a one-time MAC (or
even a t-time MAC for any fixed polynomial t).

This is similar to the subtleties that arise when trying to prove that semantically secure secret-
key encryption implies the existence of one-way functions.
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