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1 SKE review

First, we recall the definition of a many-message semantically secure secret-key encryption scheme,
since it has been a while. We change the definition slightly from the first lecture to allow for the
possibility that the message space Mn, key space Kn, and ciphertext space Cn can depend on the
security parameter n. E.g., our final scheme will encrypt n-bit messages when the key has length
n.

Definition 1.1 (Encryption scheme). An encryption scheme consists of a plaintext space Mn, a
ciphertext space Cn, and a key space Kn together with three PPT algorithms (Gen,Enc,Dec) that
follow the satisfying basic properties.

1. The key generation algorithm Gen takes as input 1n and outputs a key k ∈ Kn, i.e., k ←
Gen(1n).

2. The encryption algorithm Enc takes as input a key k ∈ Kn and a plaintext m ∈ Mn and
outputs a ciphertext c ∈ Cn, i.e., c← Enc(k,m).

3. The decryption algorithm Dec takes as input a key k ∈ Kn and a ciphertext c ∈ Cnand outputs
a plaintext m ∈Mn, i.e., m← Dec(k, c).

4. Correctness: For any k ∈ Kn and m ∈Mn,

Dec(k,Enc(k,m)) = m .

An encryption scheme is many-message semantically secure if for every PPT adversary, there
exists negligible ε such that

Pr[A wins the many-message semantic security game] ≤ 1/2 + ε(n) ,

where the many-message semantic security game is as shown below.
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Adversary Challenger
INPUT: 1n INPUT: 1n

m1,0, . . . ,m`,0,m1,1, . . . ,m`,1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b ∼ {0, 1}, k ← Gen(1n)
ci ← Enc(k,mi,b)

c1, . . . , c`←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
b′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

IF b = b′,
OUTPUT “WIN”

2 Semantic security from a PRF

Let Fk be a PRF (e.g., the GGM PRF that we constructed in the previous lecture [GGM86]).
Then, consider the following encryption scheme, whose plaintext space is Mn := {0, 1}n.

• Gen(1n): Output k ∼ {0, 1}n.

• Enc(k,m): Sample r ∼ {0, 1}n and output (r, c := Fk(r)⊕m).

• Dec(k, (r, c)): Output Fk(r)⊕ c.

It is clear that these algorithms are efficient and that the scheme is correct. The tricky bit is,
of course, security.

Theorem 2.1. This scheme is many-message semantically secure if Fk is a PRF.

The intuition behind the proof is as follows. The adversary in the many-message semantic secu-
rity game receives the ciphertexts (r1, Fk(r1)⊕m1,b), . . . , (r`, Fk(r`)⊕m`,b). Since the PRF is secure,
intuitively these ciphertexts should be indistinguishable from (r1, y1⊕m1,b), . . . , (r`, y`⊕m`,b), where
yi ∼ {0, 1}n are sampled independently of everything else. But, these new “ciphertexts” are just
uniformly random strings, independent of b. So, up to some negligible advantage in distinguishing
the PRF from random, the adversary should not be able to win the game with probability better
than 1/2.

Making this precise takes more effort than you might expect. The standard way to do it uses
a hybrid argument—although in this context I prefer to refer to it as a sequence of games. I.e.,
we will define a sequence of games Game 1, Game 2, Game 3. Game 1 will be our original game.
Game 3 will be defined in a way that makes it obvious that no adversary can win it with probability
better than 1/2. And, for each i, we will argue that no adversary can have non-negligibly larger
winning probability in Game i than in Game i + 1. We will then conclude that no adversary has
non-negligible advantage in Game 1. (Different authors differ on how they use the terms “hybrid
argument” and “sequence of games.” I prefer to reserve the term “hybrid argument” for more
systematic sequences of games—when the change from Game i to Game i+ 1 follows some simple
rule.)
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Proof of Theorem 2.1. We define the following sequence of games. In particular, Games 1 and 2
will differ by replacing Fk with a uniformly random function H ∼ {f : {0, 1}n → {0, 1}n}. So, we
think of “moving from Game 1 to Game 2 as applying PRF security.”

• Game 1 is the many-message semantic security game against our scheme. In particular, the
ciphertexts c1, . . . , c` sent to the adversary have the form ci := (ri, Fk(ri)⊕mi,b).

• Game 2 is the same as Game 1 except the ciphertext ci is replaced by c′i := (ri, H(ri)⊕mi,b)
where H ∼ {f : {0, 1}n → {0, 1}n} is a uniformly random function.

Claim 2.2. If the PRF is secure, then for any PPT adversary A there exists negligible ε(n) such
that

Pr[A wins Game 1]− Pr[A wins Game 2] ≤ ε(n)

Proof. Suppose that A is an adversary such that

Pr[A wins Game 1]− Pr[A wins Game 2] = δ(n)

for some non-negligible δ(n). Then, we construct an adversary A′ in the PRF game as follows.
A′ has oracle access to some oracle O which is either a random oracle H ∼ {f : {0, 1}n →

{0, 1}n} or Fk for k ∼ {0, 1}n. It simply runsA on input 1n to receive plaintextsm1,0, . . . ,m`,0,m1,1, . . . ,m`,1 ∈
{0, 1}n. Then it flips a coin b ∼ {0, 1}, and for i = 1, . . . , `, it samples ri ∼ {0, 1}n and queries its
oracle to compute yi := O(ri).

Finally, A′ sends the ciphertexts (r1, y1 ⊕ m1,b), . . . , (r`, y` ⊕ m`,b) to A, receiving as output
some bit b′. (Here, A′ is “behaving like the challenger in the semantic security game.”) If b = b′,
A′ outputs 1 (i.e., it guesses that O = Fk). Otherwise, it outputs 0.

Clearly A′ is efficient. Notice that when O = Fk, the view of A is distributed identically to its
view in Game 1,1 and when O = H, its view is identical to its view in Game 2. It follows that

Pr
k∼{0,1}n

[(A′)Fk(1n) = 1]− Pr
H∼{f :{0,1}n→{0,1}n}

[(A′)H(1n) = 1] = Pr[A wins Game 1]−Pr[A wins Game 2] = δ(n) ,

which is non-negligible. This contradicts the assumption that Fk is a PRF, so δ(n) must be
negligible, as needed.

We could now attempt to reason directly about Game 2. Intuitively, we would like to say that
the ciphertexts in Game 2 are just uniformly random strings that are independent of b, so that no
adversary can win Game 2 with probability better than 1/2. But, this is not exactly true. It would
be true if we conditioned on ri 6= rj for all i 6= j. But, if it happens to be the case that ri = rj
for some i 6= j, then of course H(ri) = H(rj), which means that the ciphertexts could depend on
b. (Another way of saying this is that if we happen to have ri = rj for i 6= j, then applying our
encryption scheme will result in reuse of a one-time pad. So, somewhere our argument must use
the fact that this is very unlikely to happen.) Of course, this does not happen very often, but we
must account for it. The nicest way to account for it is to simply define a third game in which this
is no longer an issue.

1This concept of “the view of A” means everything that A sees in the game. So, here this means the joint
distribution of the plaintexts mi,b, the ciphertexts ci, and the bit b′—all of which are random variables.
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• In Game 3, the ciphertext ci is replaced by (ri, yi ⊕ mb,i), where yi ∼ {0, 1}n is sampled
uniformly at random and independent of everything else.

Claim 2.3. For any adversary A (even computationally unbounded adversaries),

Pr[A wins Game 2]− Pr[A wins Game 3] ≤ `2/2n ,

where ` is the length of the lists of plaintexts chosen by the adversary in the game. In particular, if
` ≤ poly(n), then this difference is negligible.

Proof. Notice that Game 2 and Game 3 are identical unless there exists an i 6= j such that ri = rj .
For every pair i 6= j, Pr[ri = rj ] = 2−n. There are fewer than q2 such pairs, and the result follows
by union bound.

Finally, we pedantically observe that no adversary can win Game 3 with probability larger than
1/2.

Claim 2.4. For any adversary A (even computationally unbounded adversaries),

Pr[A wins Game 3] ≤ 1/2 .

Proof. The ciphertexts (ri, yi ⊕mb,i) are uniformly random and independent of b. So, the view of
the adversary in this game is independent of b, and the result follows.

Combining the three claims together, we see that for every PPT A there exists a negligible
ε∗(n) such that

Pr[A wins Game 1] ≤ 1/2 + ε∗(n) ,

which is exactly what we wanted to prove. (The final value of ε∗ that we get is the ε∗(n) :=
ε(n)+`2/2n, where ε(n) is the value of ε(n) that we got from Claim 2.2 plus `2/2n. Of course, since
` is polynomially bounded (because A is PPT, and A outputs ` strings), `2/2n is negligible. And,
since the sum of two negligible functions is negligible, we conclude that ε∗(n) is itself negligible.)
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